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A Low-Cost, High-Performance
PA-RISC Workstation with Built-In
Graphics, Multimedia, and Networking

Capabilities

Designing as a set the three VLSI components that provide the core
functions of CPU, I/0, and graphics for the HP 9000 Model 712 work-
station balanced performance and cost and simplified the interfaces
between components, allowing designers to create a system with high

performance at a low cost.

by Roger A. Pearson

Designing a workstation entails defining various functional
blocks to work together to provide a set of features at a de-
sired level of performance at the lowest possible cost. Often,
many parts of the design are leveraged from previous de-
signs, and only new functionality is designed from scratch.
This approach may save development costs, but could result
in a product that is more costly to build.

When one component of the system design has performance
that can’t be taken advantage of, whether because of archi-
tecture limitations or other components’ performance limita-
tions, then the system design suffers by having to carry the
cost of that unused performance. By designing with the total
system in mind, so that all components of the design are
optimized to work together with no wasted performance,
cost can be minimized. The designers of the HP 9000 Series
700 Models 712/60 and 712/80 took this approach to offer a
high-performance combination of graphics, multimedia, and
networking capabilities at new low prices. The objectives of
the new design included:

Providing the high performance of a PA-RISC workstation at
the lowest possible cost

Improving the performance and capabilities of multimedia
functions through simple extensions to the instruction set
Enabling an extensive set of communication features
through low-cost option cards

Designing for high-volume manufacturing.

Instrumental in meeting these objectives was the decision to
design three new custom VLSI chips together, as a set, to
achieve new levels of price/performance for the core func-
tions of CPU, I/O, and graphics.

Overview

Three new VLSI chips provide most of the functionality of the
Model 712 workstation. The PA 7100LC CPU chip interfaces
directly to the cache and main memory. The LASI (LAN/
SCSI) chip does most of the core I/O needed for entry-level
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workstations. The graphics subsystem consists of the graph-
ics chip and the frame buffer VRAMs. All three chips com-
municate through the GSC (general system connect) bus.
Fig. 1 shows a block diagram of the Model 712 system.

The Models 712/60 and 712/80 are very similar and differ
only in their cache sizes and cache speeds and in the main
system clock speeds.

The Processor

The compute power of the Model 712 system is provided by
the PA-RISC PA 7100LC processor,!:2 which is packaged in a
432-pin ceramic PGA. The CPU design was optimized for the
Model 712 and includes the following features:

Superscalar CPU

1K-byte instruction buffer

Multimedia support

Cache control for up to 2M bytes of external cache

ECC (error correction coding) memory controller

The clock frequencies of the Model 712/60 and the Model
712/80 are 60 MHz and 80 MHz respectively. The PA 7100LC
is described in more detail in the article on page 12.

Cache

The PA 7100LC CPU uses an external cache. An external
cache allows system designers to change the size of the
cache easily to meet their performance and cost goals. Fur-
thermore, off-chip cache provides all the performance neces-
sary, without limiting the CPU frequency.

The external cache is 64K bytes on the Model 712/60 and
256K bytes on the Model 712/80 and is logically split into
equal halves for the instruction and data caches. Combining
the caches saved pins on the CPU. To further reduce costs,
industry-standard SRAMs (static RAMs) are used. Table I
shows the SRAMs used in the Model 712 systems.

[0 Hewlett-Packard Company 1995
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Static RAMS Used in the Model 712 Systems
Model Function Size Speed Quantity
712/60 Tag 8K bytes 12 ns 4
Data 8K bytes 12 ns 6
Data 8K x 9 bits 12 ns 2
712/80 Tag 32K bytes 10 ns 4
Data 32K bytes 10 ns 6
Data 32K x 9 bits 10 ns 2

Main Memory

The main memory for the Model 712 systems has been engi-
neered to provide high performance with industry-standard
70-ns SIMMs (single inline memory modules). Currently sup-
ported SIMMs are available in 4M-, 8M-, 16M-, and 32M-byte
sizes. Four slots are available and must be filled in pairs for
a maximum of 128M bytes.

The Model 712’s main memory design minimizes the average
cache miss penalty. The main memory controller returns
double words (eight bytes, since a word is four bytes) back
to the CPU. Each cache line is made up of four double
words. When there is a cache miss, the one double word of
the four in the cache line that was missed is referred to as
the critical word. To minimize the miss penalty, the double
word containing the critical word is sent back to the CPU
first, followed by the remaining three double words.

Bandwidth is maximized by using fast page mode when
consecutive accesses reside on the same page. This is often
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PS2 Keyboard

Graphics

Chip RGB

1280 by 1024
Option VRAM
Array

Fig. 1. Block Diagram of the
HP 9000 Model 712 hardware.

the case when large blocks of memory are accessed and is
very common in windowed graphics systems.

The General System Connect Bus

The general system connect, or GSC, is the local bus that
connects the three VLSI devices and the optional I/O card.
The GSC bus is designed to provide maximum bandwidth
for memory-to-graphics transfers. The bus has 32-bit multi-
plexed address and data lines to minimize the number of
signals. Other features of the bus include:

Operation at half the CPU frequency (30 or 40 MHz)
Support for 1-, 2-, 4-, 8-, 16-, or 32-byte transactions
Central arbitration

Parity generation and checking.

Normally, bus transactions are terminated by a turnaround
state that allows drivers to be turned off before the drivers
for the next transaction are turned on. To improve graphics
performance, the bus supports back-to-back writes to the
same device without the turnaround state. This improves
throughput on transfers of large blocks of data from main
memory to graphics.

During transfers from memory to 1/O, it is sometimes neces-
sary to lock the CPU out of memory (e.g., when semaphores
are used). To facilitate this, the GSC bus provides a locking
mechanism, which prevents the CPU from accessing memory
(to service a cache miss, for example).

Graphics
The graphics subsystem consists of a graphics chip and four
on-board VRAMs (video RAMs), which provide a 1024-by-768-
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pixel frame buffer with a depth of eight planes at a refresh
rate of 72 Hz. An optional high-resolution VRAM board in-
creases resolution to 1280 by 1024 pixels.

The graphics chip was designed with the other system com-
ponents to provide high performance at a minimal cost. For
more information on the graphics chip, see reference 3 and
the article on page 43.

Built-in I/O
The Model 712 features a number of built-in I/O devices that
are intended to address the needs of the majority of users.

Support for these functions is provided largely by the LASI
I/O VLSI chip. LASI is a highly integrated chip that provides
a significant reduction in system cost and increased reliabil-
ity. The chip is packaged in a 240-pin MQUAD package. The
LASI chip is described in more detail in the article on page
36 and in reference 4.

The following sections briefly describe the LASI chip’s
built-in capabilities.

IEEE 802.3 LAN. LASI contains an Intel 82C596 megacell which .

was ported to work with HP’s IC process. The LAN trans-
ceiver, which was not practical to include on LASI, is loaded
on the printed circuit board. The transceiver interfaces to
both the AUI (attachment unit interface) and Ethertwist
media.

SCSI. The Model 712 uses an 8-bit single-ended SCSI inter-
face for the optional internal hard drive and external periph-
erals. The SCSI-2 interface is implemented entirely within
LASI through a megacell that was designed by HP and NCR.
A netlist for the NCR 53C710 was imported into HP’s design
environment. The design was then tuned to work in HP’s IC
process.

By keeping the SCSI bus stub length to a minimum on the
printed circuit board and on the connection to the optional
internal drive, SCSI termination on the internal side is greatly
simplified. Short stub lengths allow the bus to be terminated
on the printed circuit board, whether the optional internal
drive is present or not. This saves cost by obviating the need
for special terminators which would otherwise have to be
enabled or disabled (manually or electrically), depending on
the presence or absence of the optional internal drive.

Audio. 16-bit CD-quality audio playback and record capability
is provided by the audio circuitry, which consists of a Crystal
Semiconductor CS4216 CODEC and supporting circuitry. The
LASI chip also includes the serial interface to the CS4216.
Headphone, microphone, and line-in connectors are located
on the rear panel. Standard sampling rates include 8, 44.1,
and 48 kHz.

Real-Time Clock. A real-time clock is designed into the LASI
chip. Battery backup keeps time while the workstation is
powered down.

PS/2. There are two PS/2 connectors on the rear panel that
allow connection to a low-cost industry-standard keyboard
and mouse. The PS/2 interface circuitry is integrated into the
LASI chip.

RS-232. An RS-232 interface has also been designed into the
LASI chip. The Model 712 buffers the signals with a MAXIM
211 to provide an RS-232 serial port. LASI buffers inbound
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and outbound data with 16-byte FIFOs, at baud rates from
50 to 454 kbits/s.

Parallel. The LASI chip also provides a parallel port conforming
to the Centronics industry standard.

Flexible Disk Support. A Western Digital WD37C65C flexible
disk controller interfaces LASI to an optional internal person-
al-computer-style flexible disk drive.

Flash EPROM. An 8-bit bus on the LASI chip is demultiplexed
by two 74CHT374 latches to provide the address and data
lines necessary to address the two 128K-byte flash EPROMs
that contain the boot firmware. The flash EPROMs are also
used to store configuration parameters, eliminating the need
for an EEPROM and its associated cost.

I/0 System Support. LASI provides a number of miscellaneous
I/O system support functions, including:

Clock generation. LASI derives all the necessary clocks re-
quired by the I/O circuitry from the main system clock. It
does so by using simple divide-by-n counters and two digi-
tal phase-locked loops.

System arbitration support. LASI arbitrates GSC bus requests
from the I/O devices within LASI, as well as from the CPU
and optional expansion card.

Interrupt support. LASI also provides and manages external
interrupt capability for the various I/O devices.

Optional I/O

For those users who need functionality beyond that provided
by the built-in I/O, the Model 712 includes two personality
slots that can be configured with a variety of other I/O func-
tions. The first of these slots is referred to as the expansion
slot and includes a connection to the GSC bus. The second
slot provides a connection to the serial audio stream, and
is intended for telephone functions. This slot is called the
telephony slot.

Expansion Cards. Expansion cards are optional cards that con-
nect directly to the GSC bus to provide a variety of other I/O
functions.

Since LASI has a configurable address space and can be con-
figured as an arbitration slave, many of the expansion cards
rely on a second LASI chip to implement much of their func-
tionality.

The following optional expansion cards are provided for the
Model 712:

Second serial port. The second serial port card uses its own
LASI chip and support circuitry identical to that on the sys-
tem board to provide an additional RS-232 port.

Second LAN AUI and second serial interface. This card also
uses a LASI chip and circuitry similar to that on the system
board to add an additional IEEE 802.3 LAN with an attach-
ment unit interface (AUI) and a second RS-232 interface.
X.25 and second serial interface. A Motorola 68302 multipro-
tocol processor interfaced to the 8-bit bus of a slave LASI
provides X.25 networking to a 25-pin X.21bis port for
speeds of 1.2 kbits/s to 19.2 kbits/s. The second RS-232 se-
rial interface is implemented in the same fashion as the
other cards.

Second display. A second display can be added to the sys-
tem with the second display card. This card duplicates the
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Model 712 System Board Optional Telephony Board

LASI IO

DSP and
SRAM

DSP and
SRAM

Headphone
€— Microphone In
<4— Linen

.
.

graphics functionality that is already built into the system
board by replicating the graphics chip and its supporting
circuitry.

Token Ring/9000. The Token Ring/9000 card provides IEEE
802.5 LAN functionality through the use of a Texas Instru-
ments token ring controller chip and a custom ASIC that
provides the GSC interface. Unshielded and shielded twisted
pair connections are provided at data rates from 4 Mbits/s to
16 Mbits/s.

Second display and second LAN AUI/RS-232. This option
combines the features of the second graphics display and
the second LAN AUI/RS-232 options. Since the circuitry for
this option would not fit on a single expansion slot card,
some of the circuitry resides on a daughter card that is con-
nected to the expansion slot card. The daughter card gets
power and mechanical support through the telephony con-
nector, so when this option is installed, the telephony op-
tion is not available.

Telephony. The telephony card installs in the telephony slot
and provides two lines of telephone access. Each of the lines
can be configured to support voice, data modem, or fax
modem.

DRAM SIMMs
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Data

Access Eir:;ng
Arrangement
Data
Access Eir:;nf
Arrangement

Fig. 2. Block diagram of the
Model 712 audio and telephony
circuits.

The system board’s headset and microphone serve as the
human interface for voice telephony, and an interface chip
on the telephony card called XBAR links the system board’s
audio circuitry to the telephony functions (see Fig. 2).

This arrangement allows recording and playback during tele-
phone conversations. It also supports digital mixing of mi-
crophone, line-in, telephone, and prerecorded audio. Call-
er-ID decoding is supported, as are DTMF (dual-tone
multifrequency) encoding and decoding, and dual-line
conferencing.

The XBAR chip serves to route information between the LASI
I/O chip, the audio CODEC, and the DSP blocks in a variety
of programmable ways. Data is transferred to and from the
system board through two serial data paths. Two additional
serial paths send and receive data to and from the DSPs. Two
8-bit parallel ports are used by the DSPs during the DSP
boot process. XBAR has a few other functions, including
receiving incoming phone rings and controlling phone line
hook status.

Each DSP subsystem consists of an Analog Devices
ADSP2101 processor and 32K by 24 bits of external 20-ns

[l

Option 110

Fig. 3. The Model 712 system board.
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Fig. 4. The Model 712 system board construction.

SRAM for DSP programs and data. Each processor has two
serial ports, one for XBAR and the other for the Analog De-
vices AD28mps01 analog front end (phone CODEC). Each
phone CODEC connects to a standard two-wire telephone
line through a Silicon Systems Incorporated 73M9002 data
access arrangement, which provides the isolation circuitry
required by communications regulatory agencies.

The telephony card is described in more detail in the article
on page 69.

Printed Circuit Board Design

The Model 712 system contains a single printed circuit board
called the system board. Fig. 3 shows a photograph of the
system board. The system board supports all the functionality
of the Model 712 system except for the optional boards and
peripherals.

The system board is 10 layers deep, and has 0.005-inch
traces and spaces. It measures 11.4 inches by 5.6 inches and
uses double-sided surface mount technology.

The board construction shown in Fig. 4 was designed with
the printed circuit board vendor to ensure that the least
costly materials were chosen to obtain the necessary electri-
cal parameters. Although it is designed to exhibit specific
trace impedances, the blank printed circuit board is not a

MC10E151
160 MHz

controlled-impedance design, which saves cost. The finished
board size is optimized to make the best use of standard
subpanel sizes used by the printed circuit board vendor.
Although the board does use 0.005-inch traces and spaces,
these minimum geometries are used only when necessary.
Whenever possible, less aggressive routing is used to help
with board yield and to keep down the cost of the board.

The design of the blank printed circuit board presented a
number of technical challenges and some cost-saving
opportunities.

Performance Challenges. The clock and cache layouts pre-
sented some very special challenges in designing the printed
circuit board.

Fig. 5 shows a simplified block diagram of the clock circuit
used in the Model 712. All ECL circuitry is powered from the
Ve supply, and all clock receivers in the VLSI are designed
to operate at these shifted ECL voltage levels. This saves the
cost of additional supply voltages and level translators. The
master clock is first buffered, and multiple copies are routed
to the receiving VLSIL. This way, the delay to each device can
be independently controlled to minimize clock skew and
maximize system performance. Clocks are all routed on in-
ner layers, where propagation delay is better controlled be-
cause of the trace’s stripline nature. The clocks are driven as
differential pairs and are routed to each other to minimize
differential noise generation and susceptibility. The clock
circuitry also features an interesting termination scheme. This
pi-termination network is designed to approximate the same
load as other more traditional termination schemes. How-
ever, it has the advantage of using zero supply current and
fewer parts.

Fig. 6 shows a conceptual representation of how the cache
is routed. The cache line is routed to minimize cache ad-
dress drive delay. This arrangement also cuts down on the
number of vias and maintains an unbroken ground plane.
Address lines are routed from the CPU to the first via split on
inner layers, where the impedance is close to half that of the
outer layers. This is to better match the impedance of the
traces on the two outer layers, which are essentially in paral-
lel.

EMC and EMI Control. In addition to more traditional methods
of EMC and EMI control, the Model 712 system board uses
features built into the blank printed circuit board to mimic
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Fig. 5. The clock circuit used in
the Model 712 system.
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Fig. 6. A conceptual representation of the cache layout in the Model 712.

the functionality of equivalent discrete designs. However,
since they are built into the printed circuit board their
benefits are essentially free.

Small spark gaps are placed near many of the connectors to
help control ESD. These spark gaps are simply very small
trace segments separated at minimum geometries to provide
a shunt path for ESD energy from signal to ground.

To control RFI, the printed circuit board makes use of a
number of buried capacitors. Buried capacitors are essen-
tially small capacitors whose plates are all or part of the
printed circuit board’s signal or ground layers. The dielectric
material of the printed circuit board serves to separate the
plates of the capacitors. Each power plane is effectively by-
passed to ground by placing a ground plane in close prox-
imity to it. Furthermore, some signals are also bypassed to
ground with small buried capacitors to shunt unwanted RFI
energy to ground.

Conclusion

By taking the approach of designing from the ground up,
the Model 712 hardware designers have optimized each part
of the design to work together to provide outstanding per-
formance at very low cost. Designing the VLSI components
as a set balanced performance and cost and also simplified
the interfaces between the devices. By building in the fea-
tures wanted by most customers and making less common
features available only on low-cost option boards, the system
cost is minimized for most customers.

The Model 712 system performance is summarized in Table
1I.

Table Il
Model 712 Performance
Specification 712160 712/80
SPECint92 58.1 84.3
SPECfp92 85.5 122.3
MFLOPS(DP) 12.8 30.6
AIM APR 11 44.5 73.8
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A Low-Cost, High-Performance
PA-RISC Workstation with Built-In
Graphics, Multimedia, and Networking

Capabilities

Designing as a set the three VLSI components that provide the core
functions of CPU, I/0, and graphics for the HP 9000 Model 712 work-
station balanced performance and cost and simplified the interfaces
between components, allowing designers to create a system with high

performance at a low cost.

by Roger A. Pearson

Designing a workstation entails defining various functional
blocks to work together to provide a set of features at a de-
sired level of performance at the lowest possible cost. Often,
many parts of the design are leveraged from previous de-
signs, and only new functionality is designed from scratch.
This approach may save development costs, but could result
in a product that is more costly to build.

When one component of the system design has performance
that can’t be taken advantage of, whether because of archi-
tecture limitations or other components’ performance limita-
tions, then the system design suffers by having to carry the
cost of that unused performance. By designing with the total
system in mind, so that all components of the design are
optimized to work together with no wasted performance,
cost can be minimized. The designers of the HP 9000 Series
700 Models 712/60 and 712/80 took this approach to offer a
high-performance combination of graphics, multimedia, and
networking capabilities at new low prices. The objectives of
the new design included:

Providing the high performance of a PA-RISC workstation at
the lowest possible cost

Improving the performance and capabilities of multimedia
functions through simple extensions to the instruction set
Enabling an extensive set of communication features
through low-cost option cards

Designing for high-volume manufacturing.

Instrumental in meeting these objectives was the decision to
design three new custom VLSI chips together, as a set, to
achieve new levels of price/performance for the core func-
tions of CPU, I/O, and graphics.

Overview

Three new VLSI chips provide most of the functionality of the
Model 712 workstation. The PA 7100LC CPU chip interfaces
directly to the cache and main memory. The LASI (LAN/
SCSI) chip does most of the core I/O needed for entry-level
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workstations. The graphics subsystem consists of the graph-
ics chip and the frame buffer VRAMs. All three chips com-
municate through the GSC (general system connect) bus.
Fig. 1 shows a block diagram of the Model 712 system.

The Models 712/60 and 712/80 are very similar and differ
only in their cache sizes and cache speeds and in the main
system clock speeds.

The Processor

The compute power of the Model 712 system is provided by
the PA-RISC PA 7100LC processor,!:2 which is packaged in a
432-pin ceramic PGA. The CPU design was optimized for the
Model 712 and includes the following features:

Superscalar CPU

1K-byte instruction buffer

Multimedia support

Cache control for up to 2M bytes of external cache

ECC (error correction coding) memory controller

The clock frequencies of the Model 712/60 and the Model
712/80 are 60 MHz and 80 MHz respectively. The PA 7100LC
is described in more detail in the article on page 12.

Cache

The PA 7100LC CPU uses an external cache. An external
cache allows system designers to change the size of the
cache easily to meet their performance and cost goals. Fur-
thermore, off-chip cache provides all the performance neces-
sary, without limiting the CPU frequency.

The external cache is 64K bytes on the Model 712/60 and
256K bytes on the Model 712/80 and is logically split into
equal halves for the instruction and data caches. Combining
the caches saved pins on the CPU. To further reduce costs,
industry-standard SRAMs (static RAMs) are used. Table I
shows the SRAMs used in the Model 712 systems.
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Table |
Static RAMS Used in the Model 712 Systems
Model Function Size Speed Quantity
712/60 Tag 8K bytes 12 ns 4
Data 8K bytes 12 ns 6
Data 8K x 9 bits 12 ns 2
712/80 Tag 32K bytes 10 ns 4
Data 32K bytes 10 ns 6
Data 32K x 9 bits 10 ns 2

Main Memory

The main memory for the Model 712 systems has been engi-
neered to provide high performance with industry-standard
70-ns SIMMs (single inline memory modules). Currently sup-
ported SIMMs are available in 4M-, 8M-, 16M-, and 32M-byte
sizes. Four slots are available and must be filled in pairs for
a maximum of 128M bytes.

The Model 712’s main memory design minimizes the average
cache miss penalty. The main memory controller returns
double words (eight bytes, since a word is four bytes) back
to the CPU. Each cache line is made up of four double
words. When there is a cache miss, the one double word of
the four in the cache line that was missed is referred to as
the critical word. To minimize the miss penalty, the double
word containing the critical word is sent back to the CPU
first, followed by the remaining three double words.

Bandwidth is maximized by using fast page mode when
consecutive accesses reside on the same page. This is often
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Fig. 1. Block Diagram of the
HP 9000 Model 712 hardware.

the case when large blocks of memory are accessed and is
very common in windowed graphics systems.

The General System Connect Bus

The general system connect, or GSC, is the local bus that
connects the three VLSI devices and the optional I/O card.
The GSC bus is designed to provide maximum bandwidth
for memory-to-graphics transfers. The bus has 32-bit multi-
plexed address and data lines to minimize the number of
signals. Other features of the bus include:

Operation at half the CPU frequency (30 or 40 MHz)
Support for 1-, 2-, 4-, 8-, 16-, or 32-byte transactions
Central arbitration

Parity generation and checking.

Normally, bus transactions are terminated by a turnaround
state that allows drivers to be turned off before the drivers
for the next transaction are turned on. To improve graphics
performance, the bus supports back-to-back writes to the
same device without the turnaround state. This improves
throughput on transfers of large blocks of data from main
memory to graphics.

During transfers from memory to 1/O, it is sometimes neces-
sary to lock the CPU out of memory (e.g., when semaphores
are used). To facilitate this, the GSC bus provides a locking
mechanism, which prevents the CPU from accessing memory
(to service a cache miss, for example).

Graphics
The graphics subsystem consists of a graphics chip and four
on-board VRAMs (video RAMs), which provide a 1024-by-768-
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pixel frame buffer with a depth of eight planes at a refresh
rate of 72 Hz. An optional high-resolution VRAM board in-
creases resolution to 1280 by 1024 pixels.

The graphics chip was designed with the other system com-
ponents to provide high performance at a minimal cost. For
more information on the graphics chip, see reference 3 and
the article on page 43.

Built-in I/O
The Model 712 features a number of built-in I/O devices that
are intended to address the needs of the majority of users.

Support for these functions is provided largely by the LASI
I/O VLSI chip. LASI is a highly integrated chip that provides
a significant reduction in system cost and increased reliabil-
ity. The chip is packaged in a 240-pin MQUAD package. The
LASI chip is described in more detail in the article on page
36 and in reference 4.

The following sections briefly describe the LASI chip’s
built-in capabilities.

IEEE 802.3 LAN. LASI contains an Intel 82C596 megacell which .

was ported to work with HP’s IC process. The LAN trans-
ceiver, which was not practical to include on LASI, is loaded
on the printed circuit board. The transceiver interfaces to
both the AUI (attachment unit interface) and Ethertwist
media.

SCSI. The Model 712 uses an 8-bit single-ended SCSI inter-
face for the optional internal hard drive and external periph-
erals. The SCSI-2 interface is implemented entirely within
LASI through a megacell that was designed by HP and NCR.
A netlist for the NCR 53C710 was imported into HP’s design
environment. The design was then tuned to work in HP’s IC
process.

By keeping the SCSI bus stub length to a minimum on the
printed circuit board and on the connection to the optional
internal drive, SCSI termination on the internal side is greatly
simplified. Short stub lengths allow the bus to be terminated
on the printed circuit board, whether the optional internal
drive is present or not. This saves cost by obviating the need
for special terminators which would otherwise have to be
enabled or disabled (manually or electrically), depending on
the presence or absence of the optional internal drive.

Audio. 16-bit CD-quality audio playback and record capability
is provided by the audio circuitry, which consists of a Crystal
Semiconductor CS4216 CODEC and supporting circuitry. The
LASI chip also includes the serial interface to the CS4216.
Headphone, microphone, and line-in connectors are located
on the rear panel. Standard sampling rates include 8, 44.1,
and 48 kHz.

Real-Time Clock. A real-time clock is designed into the LASI
chip. Battery backup keeps time while the workstation is
powered down.

PS/2. There are two PS/2 connectors on the rear panel that
allow connection to a low-cost industry-standard keyboard
and mouse. The PS/2 interface circuitry is integrated into the
LASI chip.

RS-232. An RS-232 interface has also been designed into the
LASI chip. The Model 712 buffers the signals with a MAXIM
211 to provide an RS-232 serial port. LASI buffers inbound
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and outbound data with 16-byte FIFOs, at baud rates from
50 to 454 kbits/s.

Parallel. The LASI chip also provides a parallel port conforming
to the Centronics industry standard.

Flexible Disk Support. A Western Digital WD37C65C flexible
disk controller interfaces LASI to an optional internal person-
al-computer-style flexible disk drive.

Flash EPROM. An 8-bit bus on the LASI chip is demultiplexed
by two 74CHT374 latches to provide the address and data
lines necessary to address the two 128K-byte flash EPROMs
that contain the boot firmware. The flash EPROMs are also
used to store configuration parameters, eliminating the need
for an EEPROM and its associated cost.

I/0 System Support. LASI provides a number of miscellaneous
I/O system support functions, including:

Clock generation. LASI derives all the necessary clocks re-
quired by the I/O circuitry from the main system clock. It
does so by using simple divide-by-n counters and two digi-
tal phase-locked loops.

System arbitration support. LASI arbitrates GSC bus requests
from the I/O devices within LASI, as well as from the CPU
and optional expansion card.

Interrupt support. LASI also provides and manages external
interrupt capability for the various I/O devices.

Optional I/O

For those users who need functionality beyond that provided
by the built-in I/O, the Model 712 includes two personality
slots that can be configured with a variety of other I/O func-
tions. The first of these slots is referred to as the expansion
slot and includes a connection to the GSC bus. The second
slot provides a connection to the serial audio stream, and
is intended for telephone functions. This slot is called the
telephony slot.

Expansion Cards. Expansion cards are optional cards that con-
nect directly to the GSC bus to provide a variety of other I/O
functions.

Since LASI has a configurable address space and can be con-
figured as an arbitration slave, many of the expansion cards
rely on a second LASI chip to implement much of their func-
tionality.

The following optional expansion cards are provided for the
Model 712:

Second serial port. The second serial port card uses its own
LASI chip and support circuitry identical to that on the sys-
tem board to provide an additional RS-232 port.

Second LAN AUI and second serial interface. This card also
uses a LASI chip and circuitry similar to that on the system
board to add an additional IEEE 802.3 LAN with an attach-
ment unit interface (AUI) and a second RS-232 interface.
X.25 and second serial interface. A Motorola 68302 multipro-
tocol processor interfaced to the 8-bit bus of a slave LASI
provides X.25 networking to a 25-pin X.21bis port for
speeds of 1.2 kbits/s to 19.2 kbits/s. The second RS-232 se-
rial interface is implemented in the same fashion as the
other cards.

Second display. A second display can be added to the sys-
tem with the second display card. This card duplicates the
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graphics functionality that is already built into the system
board by replicating the graphics chip and its supporting
circuitry.

Token Ring/9000. The Token Ring/9000 card provides IEEE
802.5 LAN functionality through the use of a Texas Instru-
ments token ring controller chip and a custom ASIC that
provides the GSC interface. Unshielded and shielded twisted
pair connections are provided at data rates from 4 Mbits/s to
16 Mbits/s.

Second display and second LAN AUI/RS-232. This option
combines the features of the second graphics display and
the second LAN AUI/RS-232 options. Since the circuitry for
this option would not fit on a single expansion slot card,
some of the circuitry resides on a daughter card that is con-
nected to the expansion slot card. The daughter card gets
power and mechanical support through the telephony con-
nector, so when this option is installed, the telephony op-
tion is not available.

Telephony. The telephony card installs in the telephony slot
and provides two lines of telephone access. Each of the lines
can be configured to support voice, data modem, or fax
modem.

DRAM SIMMs
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Fig. 2. Block diagram of the
Model 712 audio and telephony
circuits.

The system board’s headset and microphone serve as the
human interface for voice telephony, and an interface chip
on the telephony card called XBAR links the system board’s
audio circuitry to the telephony functions (see Fig. 2).

This arrangement allows recording and playback during tele-
phone conversations. It also supports digital mixing of mi-
crophone, line-in, telephone, and prerecorded audio. Call-
er-ID decoding is supported, as are DTMF (dual-tone
multifrequency) encoding and decoding, and dual-line
conferencing.

The XBAR chip serves to route information between the LASI
I/O chip, the audio CODEC, and the DSP blocks in a variety
of programmable ways. Data is transferred to and from the
system board through two serial data paths. Two additional
serial paths send and receive data to and from the DSPs. Two
8-bit parallel ports are used by the DSPs during the DSP
boot process. XBAR has a few other functions, including
receiving incoming phone rings and controlling phone line
hook status.

Each DSP subsystem consists of an Analog Devices
ADSP2101 processor and 32K by 24 bits of external 20-ns
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Fig. 3. The Model 712 system board.
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Fig. 4. The Model 712 system board construction.

SRAM for DSP programs and data. Each processor has two
serial ports, one for XBAR and the other for the Analog De-
vices AD28mps01 analog front end (phone CODEC). Each
phone CODEC connects to a standard two-wire telephone
line through a Silicon Systems Incorporated 73M9002 data
access arrangement, which provides the isolation circuitry
required by communications regulatory agencies.

The telephony card is described in more detail in the article
on page 69.

Printed Circuit Board Design

The Model 712 system contains a single printed circuit board
called the system board. Fig. 3 shows a photograph of the
system board. The system board supports all the functionality
of the Model 712 system except for the optional boards and
peripherals.

The system board is 10 layers deep, and has 0.005-inch
traces and spaces. It measures 11.4 inches by 5.6 inches and
uses double-sided surface mount technology.

The board construction shown in Fig. 4 was designed with
the printed circuit board vendor to ensure that the least
costly materials were chosen to obtain the necessary electri-
cal parameters. Although it is designed to exhibit specific
trace impedances, the blank printed circuit board is not a

MC10E151
160 MHz

controlled-impedance design, which saves cost. The finished
board size is optimized to make the best use of standard
subpanel sizes used by the printed circuit board vendor.
Although the board does use 0.005-inch traces and spaces,
these minimum geometries are used only when necessary.
Whenever possible, less aggressive routing is used to help
with board yield and to keep down the cost of the board.

The design of the blank printed circuit board presented a
number of technical challenges and some cost-saving
opportunities.

Performance Challenges. The clock and cache layouts pre-
sented some very special challenges in designing the printed
circuit board.

Fig. 5 shows a simplified block diagram of the clock circuit
used in the Model 712. All ECL circuitry is powered from the
Ve supply, and all clock receivers in the VLSI are designed
to operate at these shifted ECL voltage levels. This saves the
cost of additional supply voltages and level translators. The
master clock is first buffered, and multiple copies are routed
to the receiving VLSIL. This way, the delay to each device can
be independently controlled to minimize clock skew and
maximize system performance. Clocks are all routed on in-
ner layers, where propagation delay is better controlled be-
cause of the trace’s stripline nature. The clocks are driven as
differential pairs and are routed to each other to minimize
differential noise generation and susceptibility. The clock
circuitry also features an interesting termination scheme. This
pi-termination network is designed to approximate the same
load as other more traditional termination schemes. How-
ever, it has the advantage of using zero supply current and
fewer parts.

Fig. 6 shows a conceptual representation of how the cache
is routed. The cache line is routed to minimize cache ad-
dress drive delay. This arrangement also cuts down on the
number of vias and maintains an unbroken ground plane.
Address lines are routed from the CPU to the first via split on
inner layers, where the impedance is close to half that of the
outer layers. This is to better match the impedance of the
traces on the two outer layers, which are essentially in paral-
lel.

EMC and EMI Control. In addition to more traditional methods
of EMC and EMI control, the Model 712 system board uses
features built into the blank printed circuit board to mimic
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Fig. 6. A conceptual representation of the cache layout in the Model 712.

the functionality of equivalent discrete designs. However,
since they are built into the printed circuit board their
benefits are essentially free.

Small spark gaps are placed near many of the connectors to
help control ESD. These spark gaps are simply very small
trace segments separated at minimum geometries to provide
a shunt path for ESD energy from signal to ground.

To control RFI, the printed circuit board makes use of a
number of buried capacitors. Buried capacitors are essen-
tially small capacitors whose plates are all or part of the
printed circuit board’s signal or ground layers. The dielectric
material of the printed circuit board serves to separate the
plates of the capacitors. Each power plane is effectively by-
passed to ground by placing a ground plane in close prox-
imity to it. Furthermore, some signals are also bypassed to
ground with small buried capacitors to shunt unwanted RFI
energy to ground.

Conclusion

By taking the approach of designing from the ground up,
the Model 712 hardware designers have optimized each part
of the design to work together to provide outstanding per-
formance at very low cost. Designing the VLSI components
as a set balanced performance and cost and also simplified
the interfaces between the devices. By building in the fea-
tures wanted by most customers and making less common
features available only on low-cost option boards, the system
cost is minimized for most customers.

The Model 712 system performance is summarized in Table
1I.

Table Il
Model 712 Performance
Specification 712160 712/80
SPECint92 58.1 84.3
SPECfp92 85.5 122.3
MFLOPS(DP) 12.8 30.6
AIM APR 11 44.5 73.8
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The PA 7100LC Microprocessor:
A Case Study of IC Design Decisions
in a Competitive Environment

Engineering design decisions made during the early stages of a product’s
development have a critical impact on the product’s cost, time to market,

reliability, performance, and success.

by Mick Bass, Patrick Knebel, David W. Quint, and William L. Walker

In today’s competitive microprocessor market, successful
design teams realize that flawless execution of product de-
velopment and delivery is not enough to ensure that a prod-
uct will succeed. They understand that defining the correct
feature set for a product and creating design methodologies
appropriate to implement and verify that feature set are just
as important as meeting the product schedule.

The design decisions that engineers and managers make
while defining a new product have a critical impact on the
product’s cost, time to market, reliability, performance, future
market demand, and ultimate success or failure. Engineers
and managers must make trade-offs based on these factors
to decide which features they should implement in a new
product and which they should not. Further, they must plan
their product development effort so that the methodologies
by which they develop their product are sufficient to ensure
that they are able to implement the product definition within
the required cost, schedule, and performance constraints.

PA 7100LC Processor

Instruction

Design choices arose frequently while we were defining and
implementing the PA 7100LC microprocessor.! We were tar-
geting the PA 7100LC to be the processing engine of a new
line of low-cost, functionally rich workstation and server
products. Our design goals for the CPU were to provide the
system performance required for our target market at an
aggressively low system cost and to deliver the CPU on a
schedule that would not delay what was to become HP’s
steepest computer system production ramp to date. Fig. 1
shows a simplified block diagram of the PA 7100LC
processor.

To meet these goals required that we sometimes had to shift
our focus from the CPU to the impact of a particular feature
upon performance and cost at the system level. Hewlett-
Packard’s position as a vendor of both microprocessors and
computer systems allowed us to use this technique with
much success.23 Even with this focus, however, the correct
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Fig. 1. A simplified block dia-
gram of the PA 7100LC processor.
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decision could be far from obvious. We often identified
several alternative implementations of a particular feature,
each with its own impact on cost, schedule, and perfor-
mance. Trading these impacts against one another proved
very challenging. Design decisions also impacted each other,
with the outcome of one serving as a critical input to others.
The effect of a decision, for this reason, was sometimes
much larger than would have appeared at first glance. Some-
times decisions created additional requirements, either for
new features or for new support methodologies. All of these
factors played together to underscore the fact that it was
critical to our product’s success to have a decision process
that worked well.

We knew that a good definition of the PA 7100LC would
require that we make feature decisions in several areas,
including:

Cache organization

Number of execution units and superscalar design
Pipeline organization

Floating-point functionality

Package technology

Degree of integration

Multimedia enhancements.

We also knew that we needed to select development meth-
odologies consistent with the feature decisions that we
made. Product features and required design methodologies
are often strongly connected. We couldn’t consider the bene-
fits of one without the costs of the other, and vice versa.
Methodologies that were impacted by our feature-set deci-
sions included:

Synthesis

Place and route

Behavioral simulation

Presilicon functional verification

Postsilicon functional and electrical verification

Production test.

These methodologies are discussed in the article on page 23.

The cumulative effects of our decisions led to the creation of
a low-cost, single-chip processor core that includes a built-in
memory controller, a combined, variable-size off-chip pri-
mary instruction and data cache, a 1K-byte on-chip instruc-
tion buffer, and a superscalar execution unit with two integer
units and one floating-point unit. We reduced the size and
performance of the floating-point unit, which we had lever-
aged from the PA 7100 processor.45 We added Ippg, sample-
on-the-fly, and debug modes to enhance testability, reduce
test cost, and accelerate the postsilicon schedule. We tailored
the methodologies by which we created the chip to match
the features that we had decided upon.

This article provides examples of our decision-making pro-
cess by exploring the decisions that we made for several of
the features listed above. In each case, we present the alter-
natives that we considered, the costs and benefits of each,
and the impact on other features and methodologies. We
discuss our decision criteria. Since we strive to continually
improve our ability to make good design decisions, we also
present, wherever possible, a bit of hindsight about the pro-
cess. In most cases, we still believe that we selected the cor-
rect alternative. However, if this is not the case, we discuss
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what we have learned and the modifications we made to our
process to incorporate this new knowledge.

The Design Decision Process

Most design decisions ultimately come down to trade-offs
between cost, schedule, and performance. Unfortunately, it
is often difficult to determine the true cost, schedule, or per-
formance for the wide variety of implementations that are
possible. And since these three factors most often play
against each other, it is necessary to make sacrifices in one
or two of the areas to make gains in the others.

The cost of a processor core is determined by the cost of
silicon die, packaging, wafer testing, and external SRAM and
DRAM. Breaking this down, we find that cost of a die is de-
termined by the initial wafer cost and the defect density of
the IC process being used. Wafers are more expensive for
more advanced processes because of higher equipment,
development, and processing costs. The die packaging costs
are determined primarily by package type and pin count.
Large-pinout packages can be very expensive. An often ig-
nored cost is the tester time required to determine that a
manufactured part is functional. Reducing the time needed
for wafer and package testing directly reduces costs. Finally,
SRAM and DRAM costs are determined by the number, size,
and speed of the parts needed to complete the design.

The schedule of a project is determined by the complexity of
the design and the ability to leverage previous work. Each
design feature requires certain time investments and has
associated risks. Time is required for preliminary feasibility
investigations, design of control algorithms, implementation
of circuits, and presilicon and postsilicon verification. Sched-
ule risks include underestimation of time requirements be-
cause of unexpected complexity and the extra chip turns
required to fix postsilicon bugs associated with complex
design features.

Performance is conceptually simple, but because of the intri-
cacy of processor design it is often difficult to measure with-
out actual prototypes. HP has invested heavily in perfor-
mance simulation and analysis of its designs. Results from
HP’s system performance lab were invaluable in making
many of the design decisions for the PA 7100LC. By support-
ing a detailed simulation model of each processor developed
by HP, the system performance lab is able to provide quick
feedback about proposed changes. HP also uses these mod-
els after silicon is received to help software developers (es-
pecially for compilers and operating systems) determine
bottlenecks that limit their performance.

Engineers at the system performance lab design their proces-
sor simulators in an object-oriented language to allow easy
leverage between implementations. All processor features
that affect performance are modeled accurately by close
teamwork between the performance modeling groups and
the hardware design groups. As the hardware group consid-
ers a change to a design, the change is made in the simula-
tor, and simulations are done to allow simple comparisons
that differ by only a single factor. This is continued in an
iterative fashion until all design decisions have been made,
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Fig. 2.* (a) 432-pin ceramic pin grid array (432-CPGA). (b) A 240-pin MQUAD and (c) a 304-pin MQUAD.

* The CPGA package is manufactured by Kyocera Inc. and the MQUAD packages are manufactured by Olin Interconnect Technologies.

after which we are left with a simulator that matches the
hardware to be built.

Without performance simulations, it would be very difficult
to estimate performance for a proposed implementation.
Even something as simple as a change in operating frequency
has effects that are difficult to estimate because of the inter-
actions between fixed memory access times and processor
features. As processor frequency increases, memory latencies
increase, but this increased latency is sometimes (but not
always) hidden by features such as stall-on-use. Stall-on-use
allows the processor to continue execution in the presence
of cache misses as long as the data is not needed for an op-
eration. These interactions make accurate hand calculations
impossible, creating a need to use simulations for comparing
many different implementation options.

The performance simulations are based on SPEC and TPC
benchmarks. While these benchmarks are useful for gather-
ing performance numbers and making comparisons, they do
not tell the whole story. Many applications are not repre-
sented by the benchmarks, including graphics, multimedia,
critical hand-coded operating system routines, and so on.
When evaluating features related to these applications, we
work directly with people in those areas to analyze the im-
pact of any decisions. Often this involves analyzing by hand
critical sections of the code (e.g., tight loops) to evaluate
the overall performance gain associated with a feature. For
the PA 7100LC, this was especially true for the multimedia
features.

The ability to quantify the impact of proposed features on
cost, schedule, and performance was paramount to our
ability to make sound design decisions.

Integration

The first design decisions that we made were related to the
high-level question “How highly integrated should we make
the chip?” This led to the questions: Should we include an
on-chip cache or not? If so, how large should it be? If we
have an off-chip cache, how should we structure it How
should the CPU connect to memory and I/0O? Should the
memory controller be integrated or not?
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The primary question was whether the CPU, cache, and
memory system should live on a single die in a single pack-
age, or whether we should partition this functionality onto
two or more chips.

The trade-offs involved in this decision were numerous. Die
cost would increase for a multichip solution. Package cost
would vary with the partitioning that we chose, as would
package type and maximum pin count. Required signal-to-
ground ratios would vary with package type, which would
either limit the signal count or require more pins (at a higher
cost). Performance, design complexity, and schedule risk
would be greatly impacted by the partitioning decision.

To sort out these trade-offs, we started with a packaging
investigation that quantified cost, performance, and risk for
different packaging alternatives. This investigation yielded a
preferred package: a 432-pin ceramic pin grid array see (Fig.
2a). This package, with its large signal count, could accom-
modate the extra interfaces required to include a memory
controller, an I/O controller, and an external cache control-
ler.

The memory controller and cache investigations were tightly
coupled. Performance simulations always included features
from both subsystems because small changes in the behavior
of one subsystem could drastically affect the performance of
the other. In the end we realized that the performance gains
brought by an integrated memory controller enabled smaller,
cheaper caches without sacrificing overall performance. This
realization drove the development of the cache subsystem.

Package Selection and CPU Partitioning. We targeted the IC
package design with the objective of minimizing system cost
with little compromise in performance. The customary pack-
age for CPU chips is either a quad flat pack (QFP) or a pin
grid array. The QFP is a plastic, low-profile package with
gull-wing connections on four sides. The QFP is inexpensive
and easy to mount on a printed circuit board and has gained
acceptance rapidly for surface mounting to printed circuit
boards. It has the disadvantage that the number of pins is
limited. Pin counts above 200 are fragile and difficult to keep
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coplanar for surface mounting. The package also has very
limited ability to dissipate heat because the chip is encased
in plastic. A recent improvement to this package sandwiches
the chip between two pieces of aluminum, which can dissi-
pate up to four watts of heat (ten watts with a heat sink). It
was this metal quad, or MQUAD, that became a candidate
for a low-cost package for our high-performance CPU. HP’s
package of choice for previous CPUs has been the ceramic
pin grid array, a complex brick of aluminum oxide and tung-
sten built in layers and fired at 2000°C. The PGA used for
the PA 7100 processor (the basis for the PA 7100LC) was a
504-pin design that incorporated the following advanced
features:

A tungsten-copper heat-conducting slug for superior thermal
conductivity to the heat sink

Ceramic chip capacitors mounted on the package for power
bypassing

Thin dielectric layers that minimized power supply
inductance

Use of 0.004-in vias internally (most are 0.008-inch).

This package performed its thermal and electrical duties very
well, but its cost had always been an issue.

Our strategy to develop a low-cost CPU coupled chip parti-
tioning options with the packaging options of using either
two low-cost MQUAD packages or placing a single large chip
in a PGA. The two-chip CPU could be placed in one 240-pin
and one 304-pin MQUAD (see Figs. 2b and 2¢). The other
alternative was to place a larger integrated chip in a single
432-pin PGA (see Fig. 2a). The first cost estimate assumed
that the PGA would be priced similarly to the 504-pin pack-
age. The total cost of both MQUAD chips was initially
thought to be about 75% less than the PGA estimate. This
would seem to indicate that the MQUAD would be the defi-
nite candidate to meet our low-cost goals. However, that
perception changed as our investigation continued.

We didn’t expect the MQUAD'’s electrical performance to
match that of the PGA because the MQUAD we were con-
sidering had only one layer of signals and no ground planes.
Ground planes can be used to shield signal traces from each
other and reduce inductances of signals and power supplies.
The PGA could incorporate several ground planes if neces-
sary. On the other hand, the MQUAD package can only ap-
proach the shielding effect of the ground planes by making
every other lead a ground, which severely limits the number
of usable signals. Gaining a lower package price by using
the MQUAD would require redesigning the I/O drivers spe-
cifically to reduce rise times and thereby control crosstalk
and power supply noise.

The PA 7100 PGA’s electrical performance exceeded the
needs of this chip, so the strategy shifted to trading away
excess performance to gain lower cost. The number of
power and ground planes was reduced to two. The design
was also modified to optimize performance without using
package-mounted bypasses or thin dielectric layers. The
PGA design was reduced to four internal metal layers with
no bypassing, no thin dielectric layers, and no 0.004-in vias,
all of which reduced cost compared to the 504-pin PGA
mentioned above.

The power dissipation of the chips would also have been an
issue for the MQUADs. Heat sinking to further improve the
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thermal resistance of the packages might have been re-
quired. CPU designs are often upgraded to higher clock
speeds after first release, so if package heat dissipation is
marginal, upgrade capability is jeopardized. (Typically,
power dissipation is proportional to operating frequency.)
The 504-pin PGA had already been used to dissipate 25
watts, which left an opportunity for cost-saving modifications.
With the thermal margin in mind, two design changes were
investigated, one to use a lower-cost copper-Kovar-copper
laminate heat spreader, and the other to eliminate the heat
spreader entirely. The first option was dismissed because of
failures found during a low-temperature storage test. (The
laminate heat spreader detached from the ceramic body be-
cause of a disparity in thermal expansion rates.) The second
option was also dismissed when the thermal resistance of
the ceramic carrier was found to be too high.

The time schedule for the completion of reliability testing
and manufacturing feasibility studies had to be considered
when evaluating the two technologies. The PGA was a ma-
ture technology with considerable experience behind it, and
the time schedule and results of the testing could be deter-
mined with some certainty. The MQUAD was a new technol-
ogy by contrast. The design was solid, but had several new
features that were untested in terms of long-term reliability.
Despite the strong desire to exploit new technology, the
schedule risk was a significant factor.

By the time the partitioning decision was to be made, the
PGA cost had shrunk to almost half of its original cost, the
304-pin MQUAD was presenting schedule risks, and both
MQUADs had marginal power dissipation. Possibly most
important, the PGA provided a robust solution with thermal
and electrical margins. The cost difference was still signifi-
cant, but the PGA provided a flexibility to the chip designers
that offset its disadvantages. Thus, the PGA package was
chosen for the PA 7100LC.

Memory Controller Destiny. Whether or not to integrate the
memory and I/O controllers onto the CPU die was one of
the most direction-forming decisions that we made. To de-
cide correctly, we had to consider the effects of integration
on factors such as multiprocessor capability, system complex-
ity, memory and I/O controller design complexity, die cost,
memory system performance, and memory system flexibility.

Traditional multiprocessor systems have a single main mem-
ory controller and I/O controller (see Figs. 3a and 3b). These
controllers maintain connections to the multiple processors.
Systems organized in this way separate the memory and I/O
controllers from the CPU. This organization allows users to
upgrade entry-level systems to include multiple processors at
the expense of reducing the memory and 1I/O performance
of uniprocessor systems and adding significant complexity to
both the memory and cache controllers.

Our design goals focused on maximizing uniprocessor per-
formance. HP was already shipping desktop multiprocessor
systems built around the PA 7100 microprocessor at the
time we were making these decisions. The market segment
that we were targeting for the PA 7100LC demanded peak
uniprocessor performance at a low system cost. Since our
target market didn’t require multiprocessing as a system
option, we directed our efforts toward the benefits that we
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Fig. 3. (a),(b) Multiprocessor architectures in which the memory
and I/O controller are separate from the CPUs. (c) A uniprocessor
system in which the memory and I/O controller are integrated into
the CPU chip.

could bring to a system through a focused uniprocessor de-
sign.

Integrating the memory and I/O controller with the CPU in a
uniprocessor system (Fig. 3¢) can have a dramatic effect on
reducing cache miss penalties by decreasing the number of
chip boundaries that the missing data must cross and by
allowing the memory and I/O controller early access to im-
portant CPU internal signals. Miss processing on the memory
interface can effectively begin in parallel with miss detection
in the cache controller. An integrated memory controller can
even use techniques such as speculative address issue to
begin processing cache misses before the cache controller
detects a cache miss.

The reductions in CPI (cycles per instruction) that we could
achieve by integrating the memory controller allowed us the
degrees of freedom that we needed to explore certain cache
architectures in greater detail. Some of these architectures
are described in the next section.
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System complexity is reduced with an integrated memory and
I/O controller. The 432-pin CPGA that we were considering
for an integrated design had sufficient signal headroom to
enable separate, dedicated memory and I/O connections. A
two-chip approach, using the lower-cost MQUAD packages,
would be forced to share pins between the memory and I/O
connections to accommodate the low signal count of the
MQUAD package, which would increase system complexity.

An integrated memory and I/O controller also simplifies the
interface to the CPU. Since this interface connects two enti-
ties on the same die, signal count on the interface became
much less important, which allowed us to simplify the
interface design considerably.

On the down side, integrating a memory and I/O controller
required enough flexibility in its design to satisfy the broad
range of system customers that our chip would encounter.
However, this requirement also exists for a nonintegrated
solution. Historically, system partners have not redesigned
memory controllers that the CPU team has provided as part
of a CPU chipset. HP’s advantage of providing both proces-
sors and systems has allowed us to work closely with system
designers and enabled us to meet their needs in both inte-
grated and nonintegrated chipsets.

In summary, integrating the memory and I/O controller onto
the CPU core introduced a gain in performance, a reduction
in complexity and schedule risk, and several possibilities for
reduced cost in the cache subsystem. These were the com-
pelling reasons to move the memory controller onto the CPU
die and continue exploring cache alternatives and optimizing
memory system performance.

Cache Organization. One of the distinguishing characteristics
of HP PA-RISC designs over the past several implementations
has been the absence of on-chip caches in favor of large,
external caches. While competitors have dedicated large
portions of their silicon die to on-chip RAMs, HP has contin-
ued to invest in aggressive circuit design techniques and
higher pin count packages that allow their processors to use
industry-standard SRAMs, while fetching instructions and
data every cycle at processor frequencies of 100 MHz and
above. This has allowed our system partners to take a single
processor chip and design products meeting a wide range of
price and performance points for markets ranging from the
low-cost desktop machines to high-performance servers. For
example, the PA 7100 chip has been used in systems with
cache sizes ranging from 128K bytes to 2M bytes and pro-
cessor frequencies ranging from 33 MHz to 100 MHz.

The main design goals for the PA 7100LC were low cost and
high performance. Unfortunately, high-performance systems
use large, fast, expensive caches. Obviously, trade-offs had
to be made. As with previous implementations, the designers
started with a clean slate and considered various cache op-
tions, including on-chip cache only, on-chip cache with an
optional second-level cache, split instruction and data off-
chip caches, and combined off-chip caches (see Fig. 4). Ulti-
mately, the cache design was closely linked to the memory
controller design because of the large effect of memory
latency on cache miss penalties.
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Fig. 4. Different cache organizations. (a) On-chip cache. (b) On-
chip cache with an optional second-level cache. (c) Split instruction
and data off-chip caches. (d) Combined off-chip caches.

On-chip caches have the obvious advantage that they can
allow single-cycle loads and stores at higher chip frequencies
than are possible with many off-chip cache designs. They
also allow designers to build split and associative cache ar-
rays which would be prohibitive for off-chip designs be-
cause of the large number of I/O pins required. Unfortu-
nately, in current technologies on-chip caches tend to be
fairly small (8K bytes to 32K bytes) and even with two-to-
four-way associativity, they have higher miss rates than
larger (64K bytes to 256K bytes) direct-mapped, off-chip
caches. Also, on-chip caches require a substantial amount of
chip area, which translates to higher costs, especially for
chips using leading-edge technology with high defect densi-
ties. This extra chip area also represents lost opportunity
cost for other features that could be included in that area.
Examples include an on-chip memory and 1I/O controller,
graphics controller, more integer execution units, multimedia
special function units, higher-performance floating-point
circuits, and so on.

Another drawback of on-chip caches is their lack of scalabil-
ity; providing multiple cache sizes requires fabricating multi-
ple parts. To overcome this limitation designers can allow for
optional off-chip caches. The off-chip caches can range in
size and speed and can provide flexibility for system design-
ers looking to meet different price/performance choices.
Low-end systems need not include the off-chip cache and
can be built for a lower cost. High-end systems can get a
performance boost by paying the extra cost to add a second-
ary off-chip cache. For most systems, the cost for this flexi-
bility is added pin count to allow for communication with
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the off-chip caches. Other systems might be able to multi-
plex the cache lines onto some already existing buses such
as the memory bus.

For the PA 7100LC, we determined that a primary on-chip
cache would cost too much in terms of more expensive
technologies, increased die size, and the lost opportunity of
putting more functionality on the chip. Without a primary
on-chip cache, we were able to design a processor with two
integer units, a full floating-point unit including a divide and
square root unit, and a memory and I/O controller. We
achieved this functionality using only 905,000 FETs in 0.8
micrometer (CMOS26) technology on a die measuring 1.4 cm
by 1.4 cm (see Fig. 5). CMOS26 is a mature HP process that
has been used for several processor generations. As a result,
it has a low defect density and thus, a low cost. A processor
with an on-chip cache would have required a more ad-
vanced technology having higher wafer costs and defect
densities. Of course, without an on-chip cache, we were
challenged to design a low-cost off-chip cache that allowed
accesses at the processor frequency.

HP’s previous implementations of PA-RISC were built with
independent instruction and data caches made up of industry-
standard SRAMs (see Fig. 4c). It would have been easy to
leverage the independent direct-mapped instruction and data
cache design from the PA 7100, but we were determined to
find a less expensive solution. Independent cache banks
require a high pin count on the processor chip because each
bank requires 64 data pins and about 24 pins for tag, flags,
and parity. Thus, combining instructions and data into a
single set of cache RAMs (Fig. 3d) saves about 88 pins on
the processor chip. These extra pins directly affect packag-
ing costs. Also, providing split caches requires using more
SRAM parts in a given technology. Systems based on the PA
7100LC with a combined cache require only 12 SRAM parts
using x8* technology. By leveraging the aggressive I/O de-
sign from previous implementations, the PA 7100LC can ac-
cess 12-ns SRAM parts every cycle when operating at fre-
quencies up to 66 MHz. Since 8K X 8, 12-ns SRAMs are
commodities in today’s market, the cost of a 64K-byte cache
subsystem for a 60-MHz PA 7100LC is comparable to the
price we would have paid for a much smaller on-chip cache.

Combined instruction and data caches have one large draw-
back. Since the PA 7100LC processor can consume instruc-
tions as fast as the cache can deliver them, there is little or
no cache bandwidth left to satisfy load and store operations.
To solve this problem, we needed to implement some type
of instruction buffer on the processor chip. A large instruc-
tion buffer would have all the drawbacks of the on-chip
cache design discussed above, so we were determined to
find a way to achieve the desired performance with a small
buffer. We knew we would need a mechanism to prefetch
instructions from the off-chip combined cache into the dedi-
cated on-chip buffer during idle cache cycles. Thus, we
started with a standard direct-mapped 2K-byte buffer and
simulated various prefetch and miss algorithms. As expected,
we found that performance was extremely sensitive to the
buffer miss penalty, which ranges from zero to two states

* RAM sizes are quoted in depth by width (i.e., 64K x8 is 65,536 deep by 8 bits wide).
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Design Methodologies for the
PA 7100LC Microprocessor

Product features provided in the PA 7100LC are strongly connected to the
methodologies developed to synthesize, place and route, simulate, verify,

and test the processor chip.

by Mick Bass, Terry W. Blanchard, D. Douglas Josephson, Duncan Weir, and Daniel L. Halperin

Engineers who wish to create a leading-edge product with
competitive performance, features, cost, and time to market
are often challenged to create design methodologies that will
enable them to succeed in their task. Decisions about the
features of a product usually have an inseparable impact on
the methodologies used to create, verify, debug, and test the
product.

During the development of the PA 7100LC microprocessor,12
engineers crafted several methodologies that supported the
design decisions that were made throughout the project
and provided the framework for implementing the design
decisions.

This article explores several of these methodologies. For
each methodology, we discuss the design decisions that im-
pacted the methodology, the alternatives that we considered,
and the course that we chose. We discuss the results pro-
duced by each methodology, as well as problems that we
encountered and overcame during each methodology’s de-
velopment and use.

Some of the design decisions that motivated us to develop
new design methodologies for the PA 7100LC are discussed
in the article on page 12. The areas in which we developed
these methodologies include control synthesis, place and
route, production test, processor diagnosability, presilicon
verification, and postsilicon verification.

The resultant methodologies were crucial to our ability to
meet the design goals that we had set for the PA 7100LC.
Taken together, they enabled good decisions leading to a
successful product implementation.

Synthesis and Routing Methodology

The control circuits in any microprocessor typically represent
a major portion of the complexity of the chip. The control
circuits of the chip contain most of the chip’s intelligence. It
is these circuits that direct the rest of the components on the
chip. The operation of the control circuits is similar to the
way operators of complex machines on a factory floor con-
trol the way that those machines behave.

Blocks of control circuitry perform similar jobs, and the na-
ture of these jobs determines the nature of the control
blocks themselves. Control blocks typically implement logic
equations, the outputs of which control some other function
present on the chip. The logic equations implemented by
control blocks tend to be irregular and loosely structured. A
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necessary characteristic of any control block is for its outputs
to become valid in sufficient time to control its downstream
circuits properly. Like other portions of the chip, control
blocks can have timing paths that limit the overall chip oper-
ating frequency if the blocks are not carefully designed and
implemented.

Another characteristic of blocks that implement control logic
is that they change frequently throughout the design pro-
cess. Experience has shown that a vast majority of bugs are
found in the control blocks, probably because so much of
the chip complexity resides there. We have found that it is
very likely that the last bugs fixed before a chip design is
sent to manufacturing will be in these blocks.

When we were defining the methodology for implementing
the control circuitry for the PA 7100LC, we considered these
general characteristics, as well as specific new requirements
that stemmed from our design goals for the project. The PA
7100LC had new requirements, compared to earlier CPUs, in
the areas of low power dissipation and support of Ippg test-
ing. We knew that the PA 7100LC control would be even
more complex than past CPUs because of its high level of
integration and its superscalar design. To make it easy to
accommodate this new functionality, we wanted to be able to
make the control blocks as small and as flexibly shaped as
possible. Finally, since we were leveraging the design of the
PA 7100LC processor from the PA 7100 processor,34 we
wanted to leverage control equations or control circuitry
from the past design for many of the blocks.

The control of the PA 7100, from which we were leveraging,
is primarily implemented as a programmable logic array
(PLA). Programmable logic arrays have very regular physical
and timing characteristics. The PLA architecture used in the
PA 7100 involves dynamically precharged and pseudo-NMOS
circuits. The outputs of this PLA become true at least one
CPU state after its inputs became valid. The PLA latches all
inputs with respect to a specific fixed clock edge.

PLA Methodology. The methodology used to design PLAs for
the PA 7100 was well developed as were the tools that were
necessary to support it. PLAs were designed in a high-level
language with a syntax reminiscent of the Pascal program-
ming language. In-house tools were available to translate the
high-level source language to optimized Boolean sum-of-
products equations. Other in-house tools were available to
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use these sum-of-products equations to generate the PLA
artwork (including programming the array).

When the destination circuits could not tolerate the one-state
delay required by the PLA core, we created schematics for
handcrafted standard-cell blocks that could calculate their
outputs in the required time. We then used an in-house
channel router to create artwork for the standard-cell blocks.

The PA 7100 PLA methodology had several advantages. The
PLA design and implementation tools were simple and well-
understood. They provided a turnkey artwork generation
solution from the high-level control equations, which made
it easy to accommodate late changes. Most important, we
already had a high investment in this methodology. We un-
derstood it very well, had all the required tools in place, and
knew we wouldn’t find any surprises.

However, when considered in light of the requirements of
the PA 7100LC, the PLA methodology had several disadvan-
tages. Although the physical structure of a PLA is fixed and
very regular, its fixed shape would lead to difficulty in floor
planning for a chip as highly integrated as the PA 7100LC. We
also knew that PLA implementations of control logic do not
yield optimal circuits with respect to absolute size. PLA cir-
cuits involve both precharged logic and pseudo-NMOS logic,
leading to high power dissipation relative to fully static cir-
cuits. PLA circuits are also incompatible with our Ippg test
methodology, which is described later in this article. Al-
though PLAs can usually guarantee a one-state delay from
input to output, their timing is inflexible. The addition of
hand-designed standard-cell blocks to address this problem
is not only labor-intensive, but also adds complexity to the
overall solution and increases the probability of intro-
ducing bugs in these areas. Also, some types of control logic
cannot be represented compactly in the sum-of-products
form required by the PLA methodology. This logic must then
either be moved into a standard-cell block or redesigned.

New Methodology. Since the disadvantages of the PLA method-
ology would compromise our ability to achieve our design
goals, we began to investigate alternatives. We had some
positive experience with using Synopsys, a commercial syn-
thesis tool, on the floating-point control block of the PA
7100. We began to investigate the potential impact of com-
bining automated synthesis using Synopsys with an over-the-
cell router.t Our investigation of combining the synthesize
and route methodology pointed out the following advan-
tages and disadvantages:

The absolute size of the blocks produced would be smaller
than the blocks produced using either PLAs or channel-
routed blocks. Additionally, the floor plan would be more
flexible than that produced by a PLA, allowing us to parti-
tion the controller so that we could create control blocks that
fit into available area close to the circuits they must control.
We would have to pay more attention to timing because we
would no longer have the regular timing structure of the
PLA to guarantee that state budgets would be satisfied.

The circuits produced would dissipate less power than
corresponding PLA implementations because the synthesize
and route methodology uses fully static circuitry. The circuits
would also be Ippg compatible.

t Over-the-cell routers place and route cells so that there is less need to provide routing
channels between the cells.
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* We would have to design a new library of standard cells that

would be compatible with the over-the-cell router. We would
also need to design a new set of drivers that would drive
output signals from the standard-cell core to the rest of the
chip and that would be compatible with our production test
design rules. These tasks were very well-defined and we un-
derstood the effort that would be required to complete them.
Of greater concern was the realization that the synthesis
path from the input equations to completed artwork would
be more complex than the corresponding path in the PLA
methodology and would be almost completely new.

With the PLA methodology, we knew that there would be
no surprises. Incorporating this new technology would re-
move much of that certainty. However, the benefits clearly
outweighed the costs. We felt that we couldn’t afford to com-
promise our power, area, timing, and test goals by continu-
ing with the PLA methodology.

We overcame several issues while making the new method-
ology work for us. We leveraged the source code of many of
the control blocks from the PA 7100, all of which were spe-
cified in the PLA source language. We were able to leverage
existing PLA sources directly by using the PLA tools to gen-
erate sum-of-product equations in a form that the Synopsys
synthesis tool could understand. Synopsys was then free to
massage the equations into a more optimal form. Source
code development of these leveraged control blocks contin-
ued using the PLA source language, even though we were
using the new methodology for synthesis and route. We de-
veloped control blocks that were new for the PA 7100LC
using the Verilog behavioral description language, which has
a more direct input path to Synopsys.

We chose the Cell3 router from Cadence Systems Inc. to
perform the place and route portion of our new methodol-
ogy. The main issue remaining was how to integrate this
new tool with our other tools. To minimize the number of
costly licenses we needed to purchase and to maximize the
block designers’ productivity, we decided to use our existing
artwork editor as a front end to the router’s floor planning
capability. This approach allowed designers to preplace criti-
cal cells, power nets, and clock nets easily. We developed
new tools that would translate this floor plan into a form that
the Cell3 router could understand. While these techniques
maximized designer productivity and minimized license cost,
we found that it was sometimes difficult to isolate bugs in
the methodology to either our front-end tools or to the Cell3
router itself.

We also discovered that the timing capabilities of the version
of Synopsys that we used were less robust than we had be-
lieved at the beginning of the project. This discovery had
only a minimal impact on blocks that were leveraged from
PLAs because of the regularity in the timing of those blocks.
However, to ensure robust timing on the remaining blocks,
we needed to develop new tools. The need for these unan-
ticipated workaround tools had a negative impact on our
schedule.

As with PLAs, we also found that certain types of circuits do
not map well to the synthesize, place, and route methodol-
ogy. On a large block where we made much use of the timing
flexibility offered by static standard cells, we found that our
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synthesis tools were sometimes unable to produce circuits
that met the timing and area constraints of the block. When-
ever this occurred, we had to redesign the control source so
that the synthesized circuits could meet their physical re-
quirements, or help the tools by hand-designing portions of
the circuit.

We found that on some of the standard-cell blocks leveraged
from the PA 7100, the synthesis tools had difficulty creating
circuits that performed as well as their PA 7100 counterparts.
This difficulty was caused in part by differences in the stan-
dard-cell libraries for the two chips. The PA 7100LC library
had no pseudo-NMOS circuits, which were used quite effec-
tively to meet timing on the PA 7100 (at the expense of
higher power dissipation). The rest of the difference lies in
the fact that, for all its sophistication, automated synthesis is
still no match for carefully hand-designed blocks. Fortu-
nately, our design tools allowed us to hand-design portions
of the block while synthesizing the rest of the block. Although
time-consuming, we chose this approach in cases where the
tool path was unable to provide a satisfactory solution.

The overall results of the methodology we chose were good.
We were able to partition the PA 7100LC’s control functional-
ity into seven primary control blocks. Four of the blocks
control the sequencing and execution of instructions by the
pipeline. The remaining three control blocks control the
memory and I/O subsystem, the cache subsystem, and the
floating-point coprocessor (see Fig. 1). Together, these
seven blocks represent only 13% of the total die area, and
implement nearly all of the control algorithms and proto-
cols used by the PA 7100LC.
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Even though the PA 7100LC adds integer superscalar execu-
tion and a memory and I/O controller compared to the PA
7100, the area of the control core produced by the new
methodology is about half the area of the PLA core of the PA
7100. The area occupied by the driver stacks in the control
blocks on the two chips is about the same.

The new methodology implemented all of the control blocks
correctly and introduced no functional bugs. The timing
methodology that we had in place by the end of the project
was very effective at identifying problem timing paths before
they made it onto silicon. When we received chips from
manufacturing, we found no problem timing paths in any of
the control blocks that were created using the new method-

ology.

Verification Methodology

One of the most prominent design goals for the PA 7100LC
was to meet the schedule required to enable a very steep
production ramp. This goal, coupled with Hewlett-Packard’s
commitment to quality, meant that we needed to have in
place a solid plan to verify the correctness of the chip at all
stages of its design.

Our design goals and the knowledge that the PA 71000LC
was to be the most highly integrated CPU that HP had ever
created led us to focus early on the methodology that we
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would use to verify the chip. As shown in Fig. 2, our verifi-
cation methodology included several distinct forms of veri-
fication, some of which occur before silicon is manufac-
tured (presilicon verification) and some of which occur
after first silicon appears (postsilicon verification).

Presilicon verification activities included:

Creating software behavioral models through which we
could verify the correctness of either the entire design or
portions of it

Creating switch-level models of the implementation to
ensure that the implementation matched the design
Writing test cases that provided thorough functional
coverage for each of these models

Using in-circuit emulation to increase vector throughput and
to provide an orthogonal check of the chip’s correctness.

Postsilicon verification activities included:

Augmenting functional coverage by running hand-generated
test cases, randomized test cases, and application software
Testing actual silicon against its electrical specification using
a rigorous electrical testing procedure.

We designed each portion of our verification methodology to *®

ensure that we could meet our schedule and quality goals.
The following sections describe in more detail the types of
verification we used.

A New Strategy

At the time work was starting on the development of the PA
7100LC chip, HP was moving toward a new product devel-
opment philosophy, which had as its basis the fact that HP
could no longer afford to do everything for itself. The time
had come to specialize in core competencies and look to
outside vendors to cover the needs common in the industry.
Unless HP provided a clear competitive advantage over in-
dustry-standard tools and methods, design teams were en-
couraged to adopt these standards, paying others to develop
and maintain leading-edge tools and processes.
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During the PA 7100LC investigation phase, engineers investi-
gated industry-standard tools in the areas of behavioral simu-
lation, static timing analysis, fault grading, timing verification,
switch-level simulation, and other areas of chip verification.
The first and foremost goal of these investigations was to
determine which tools provided the fastest and most effi-
cient contribution toward design and verification, ultimately
leading to earlier products. The following section will pro-
vide an analysis of our behavioral simulator selection, which
is just one example of the many tool decisions we made for
the PA 7100LC.

Behavioral Simulation. Before the PA 7100LC development
effort, we had been using a proprietary simulator which was
written and maintained by an internal tools group. With the
standardization of simulation languages in the industry, we
questioned the value of high internal development and
maintenance costs for this tool. We investigated the language
and simulator options available in the industry and eventu-
ally reached a final list of choices:

* The proprietary HP solution

Verilog
VHDL (IEEE standard 1076).

Other HP design labs, responsible for graphics and IC hard-
ware design, had migrated to Verilog from the HP simulator
and had found significant improvementsn simulation
throughput on their ASIC designs. The throughput disadvan-
tage of the HP simulator was somewhat balanced by the fact
that it carried no licensing fees, was fully robust, and had
been proven capable of simulating a large, custom IC design
such as a CPU.

Verilog had become a de facto standard in the U.S. for high-
level and gate-level simulation in 1992 and had been used
extensively in HP’s graphics hardware and IC design labs.
Their experience indicated that Verilog was very robust and
that it allowed personalized extensions through linking with
C code. The IC design lab demonstrated simulation speeds
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with Verilog that were about seven times faster than the in-
ternal HP simulator. Since Verilog was becoming more com-
mon within HP, it would ease our task of sharing and com-
bining simulation models with design partners. For example,
the floating-point circuits that we would be leveraging from
the PA 7100 for the PA 7100LC were modeled in Verilog. The
graphics chip and the LASI chip used in the Model 712
workstation were being developed using Verilog, and many
of the commercial ICs used in the system had Verilog models
available for system simulation. By choosing Verilog, we
would create a homogeneous environment. We also felt that
Verilog’s C-like syntax would allow engineers to learn the
language quickly. Finally, the Verilog language would pro-
vide a bridge to other useful industry-standard tools for static
timing, fault grading, and synthesis.

At the time we were investigating simulators we found only
one supplier who could provide a mature Verilog simulator
in our required time frame. This particular simulator had
some disadvantages compared to our internal simulator,
which included higher main memory requirements and the
need to recompile the simulation model at each invocation
of the simulator. For large models, this compile phase could
last a full minute. The internal simulator, by contrast, com-
piled the model once into an executable program which
contained the simulation engine, and incurred no run-time
startup penalty. Also, because Verilog was licensed we
would have to purchase sufficient licenses to cover our sim-
ulation needs, which would present a large initial expense.

A third major simulation language we investigated was VHDL
(IEEE Standard 1076). While Verilog was becoming a de facto
standard in the United States, VHDL was sweeping Europe.
VHDL shared many advantages and disadvantages with
Verilog. Simulation models of commercial system chips were
often available in both languages. VHDL provided hooks to
support industry-standard tools for timing, fault grading, syn-
thesis, and hardware acceleration. VHDL was also licensed
and would be expensive. The primary differentiator between
VHDL and Verilog was in ease of use and ease of learning.
Other HP design labs indicated that VHDL was more difficult
to learn and use than Verilog. Also, there was no local ex-
pertise in VHDL, while proficiency in Verilog had been
growing, and significant inroads had already been made at
integrating Verilog into the remainder of our tool set.

With this information in mind, the PA 7100LC technical team
decided to use Verilog as the modeling language for the PA
7100LC processor. The compelling motivations for this
choice were:

The demonstrated success of other HP labs in using the Ver-
ilog simulator in ASIC designs

The availability of local expertise and support for the
simulator and modeling language

The ability to standardize on a single simulator and model-
ing language for the development of all custom VLSI used in
the HP 9000 Model 712

The ability to interface easily to other industry-standard
tools.
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Given this decision, we joined an effort with other design
labs to enhance the Verilog simulator to include an improved
user interface and more tool interfaces to be used through-
out our verification effort.

Turn-on Process. We migrated to the Verilog modeling lan-
guage and simulator in two steps. First, we validated that
Verilog could simulate an existing PA-RISC design of compa-
rable complexity to the PA 7100LC by converting the PA
7100 simulation model (from which the PA 7100LC design is
leveraged) into Verilog. Second, we used the knowledge that
we gained during this conversion process to complete the
development of the PA 7100LC.

Converting the PA 7100 simulation model into Verilog was a
good decision for several reasons. We wanted to start with a
known functional model from which we could leverage. We
also needed to confirm that Verilog was robust and accurate
enough to model a design as large and complex as a CPU.
The PA 7100 offered a hierarchical, semicustom design
model that consisted of high-level behavioral blocks (e.g.,
the translation lookaside buffer) and FET descriptions (e.g.,
in custom leaf cells). This varied design would provide a
good test of the simulator’s ability and would help us to
learn about Verilog’s unique requirements.

To aid the conversion process, we created a tool that con-
verted the HP proprietary modeling language to Verilog syn-
tax. We fixed code by hand wherever the two languages did
not have similar constructs or where they evaluated similar
constructs differently. The converted model passed its first
test case within two months.

Once the PA 7100 model was up and running in Verilog, we
measured its simulation throughput. Instead of the expected
7% speedup, we discovered a full 4x slowdown compared to
the HP simulator. We also found that the model consumed
more memory than we had anticipated. Through careful
analysis and support from our supplier, we learned that
much of our model syntax was very inefficient. In addition
to inefficiencies created by the translation tools, many syntax
structures that were optimum in HP’s simulator were nonop-
timal in Verilog. Profiling and correcting these inefficiencies
greatly improved performance and resource requirements.

Results. The result of the decision to use Verilog to model
the PA7100LC was positive, with a few disappointments. The
main disappointment was that the Verilog model of the PA
7100LC achieved only parity in throughput and required five
times more memory than the HP simulator.

However, Verilog brought strengths in other areas. Verilog
allowed us to make incremental changes to the model
quickly and easily. Verilog enabled us to capitalize on indus-
try-standard tools in the areas of synthesis, timing, fault grad-
ing, and in-circuit emulation. We were able to use a single
modeling language across all of the custom components in
the HP 9000 Model 712 workstation and to obtain compat-
ible models for many of the external components.
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We soon learned to use the new strengths provided by Veri-
log and became efficient in using the language and the new
simulator. Verilog successfully modeled all constructs re-
quired in the PA 7100LC design, and a high level of quality
was the end result of using this tool.

Presilicon Functional Verification

Because the cost and lead time of manufacturing CPU die are
so great and because our system partners depend on fully
functional first silicon to meet their schedule goals, it is im-
portant that our presilicon verification methodology give us
high confidence in the functional quality of the first silicon.
This task proved to be a challenge for the PA 7100LC chip
because it was designed by many engineers, and its feature
set is extensive and complex. These factors introduced the
opportunity for design and implementation bugs.

The PA 7100LC is the first HP processor chip to integrate the
memory and I/O controller on the same die as the CPU. In
the past, these designs lived on separate die and were owned
by separate project teams. The verification efforts for the two
designs were mostly independent. A careful specification of
the interface between the two designs allowed this approach
to succeed.

We realized that even though the PA 7100LC would integrate
the memory and I/O controller onto the CPU die, it would
be more effective to verify the memory and I/O controller
separately from the CPU core for the majority of the tests.
This would allow test cases for both the CPU and the mem-
ory and I/O controller to be more focused, smaller, and
faster to simulate than they would be in a combined model.
We created a well-defined interface between the CPU and
memory and I/O controller to enable this approach.

Each of these presilicon verification efforts was structured as
shown in Fig. 2. First we created a behavioral model for the
portion of the design whose function was to be verified. A
behavioral model represents the design at some level of ab-
straction, and typically moves from very high-level to much
more specific as the project progresses. As mentioned above,
we chose Verilog as the modeling language for our design.

The behavioral model was the heart of the simulation envi-
ronment that would enable us to verify the CPU and the
memory and I/O controller. Our job was to find deficiencies
in this model. However, to do this we needed a way to stim-
ulate the model, observe its results, and ensure that its be-
havior was correct. To meet these needs, we created addi-
tional software objects to complete the simulation
environment.

At each of the external interfaces of the behavioral model,
we created custom code that was capable of modeling the
behavior of the device on the other side of the interface and
of stimulating and responding to the interface as appropriate
for that device. For example, these stimulus-generating soft-
ware objects were used in our simulation environment in the
same way that dynamic RAM, external cache, and I/O devices
are used in a physical system. We authored the code that
models these objects in a high-level language (typically C).
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Another type of custom software that augments the simula-
tion environment consists of checkers. A checker monitors
the behavioral model and checks aspects of model behavior
for correctness. We used a number of different checkers dur-
ing the PA 7100LC verification effort. Some checkers were
very focused (e.g., a protocol checker on the I/O bus), and
others were more global (e.g., the PA-RISC architectural simu-
lator).

Creating “watchdog” pieces of code to detect and signal er-
rors automatically in the simulation environment helped us
to maintain our schedule. Previous CPUs had an indepen-
dent model of the design that matched the behavioral model
state-by-state for all external pads and architected internal
state.* Creating the independent model was time-consuming
and not easily broken into small pieces that could be
worked on in parallel. We couldn’t run test cases on the be-
havioral model without a fully functional independent
model. Replacing this independent model with a collection
of checkers allowed us to create multiple checkers at the
same time. We were able to turn on the checkers indepen-
dently as the functionality that they checked became avail-
able in the behavioral model. Also, the checkers didn’t need
to be fully functional for us to run useful test cases.

The final aspect of the simulation environment is the test
case. A test case provides initialization to the model and the
stimulus generating software objects and then orchestrates
the stimulus generators to provide external stimulus while
the model is simulating. The checkers constantly watch
model behavior and identify rules that the model violates. The
test cases are not self-checking. They simply stimulate the
model and rely on the checkers to ensure that the model
responds correctly.

We wanted the test cases to create the complex interactions
in the CPU core and in the memory and I/O controller that
are necessary to find subtle bugs. The model, stimulus gen-
erators, and checkers provide an environment that makes it
easy to generate short, powerful test cases. To improve test
case coverage, we gave the responsibility for test case cre-
ation to both the CPU and the memory and I/O controller
designers, who had a detailed knowledge of the internal
operation of the chip, as well as to independent verification
engineers, who knew only the external functional specifica-
tion of the chip. We used design reviews to ensure that our
suite of test cases adequately covered all functionality pres-
ent in the design.

Testing on the behavioral model is the first line of defense
against flaws in a design. To ensure that our implementation
matched the design, we ran our full suite of test cases on a
gate-level behavioral model. We created this model from the
complete chip schematics. We also tested a switch-level
model that we created by extracting the FET netlist from the
completed chip artwork. Since this was the same artwork
that manufacturing would use to fabricate the chip, this re-
gression served as a final test of the functional correctness of
both design and implementation.

*In this usage architected state refers to a particular pattern of ones and zeros on internal chip
nodes.
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To ensure that there were no coverage holes in the interface
between the CPU and the memory and I/O controller, we

created a model that merged these two designs into a single
behavioral model of the entire chip. We tested this model to
gain certainty that both parts would work properly together.

Finally, we combined behavioral models of the PA 7100LC
with behavioral models of other chips in the system and
performed system-level verification to ensure that each of
the chips interpreted the interchip interfaces consistently and
to ensure that all the chips in the system functioned as ex-
pected.

Using this extensive verification methodology, the first silicon
we delivered allowed us to boot the HP-UX* operating system
and enabled our system partners to progress towards meeting
their system schedules.

Postsilicon Functional Verification

Presilicon verification, while providing an excellent first pass
at ferreting out design or implementation flaws, is not capa-
ble of identifying all bugs in a complex custom CPU such as
the PA 7100LC. Two factors make this true. First, the simula-
tion speeds of even high-level behavioral models (typically
less than 10 Hz) are not sufficient to exercise all the interest-
ing state transitions within the CPU in the time available.
Second, experience has shown that in a chip of this type
there are sometimes subtle differences between the presili-
con model and actual chip behavior.

To ensure a quality CPU design, we performed extensive
postsilicon testing on the PA 7100LC in systems running at
actual processor speeds (50 to 100 MHz). The difference of
about seven orders of magnitude in vector throughput be-
tween running test cases on presilicon models and code
running on actual silicon underscores the potential for thor-
ough testing offered by postsilicon verification.

One of the goals of presilicon testing is to ensure that the
simulation model matches the behavior specified by the de-
sign. We carried this goal into postsilicon testing and ran a
suite of tests on actual chips in a computer system. The tests
behaved the same when they were run in the computer sys-
tem as they did on the PA 7100LC presilicon models.

We knew that postsilicon testing would be the last opportu-
nity to find functional problems with our processor before
we shipped systems to customers. Since the cost of finding a
serious functional problem once systems are shipped is ex-
tremely high, we wanted to exercise the processor
thoroughly with as many different tests as possible. The vari-
ety of features that we had added to the PA 7100LC made
this process more difficult. Each of these features had to be
tested, usually in combination with other features.

The tests that we used during the PA 7100LC postsilicon
verification effort included:

A collection of handwritten tests, run in an environment that
made them more stressful for the processor

Random code generators that produced software that
deliberately stressed complex areas of the processor

A collection of application software including operating sys-
tems, benchmarks, and other applications.
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Handwritten Tests. Hewlett-Packard has created a library of
programs whose purpose is to ensure that a processor con-
forms to the PA-RISC architecture. In addition to this library,
we created other programs to test specific processor fea-
tures. We also created a small operating system that allowed
many of these programs to run simultaneously and repeti-
tively in a manner that was stressful to the processor. This
operating system would interrupt the programs at different
intervals and also change portions of the processor state
(e.g., cache and TLB) before restarting a program. Finally, the
operating system kept an extensive log of program activity
to help us track down bugs that it found.

In addition to the programs that we ran under the special
operating conditions, we created another set of handwritten
tests specifically to test the memory and I/O controller por-
tion of the processor. These tests used an I/O exerciser card
to ensure that the memory and I/O controller would behave
properly in the presence of any conceivable I/O transaction.
We also used these tests to exercise the DRAM interface of
the memory and I/O controller.

Focused Random Testing. To supplement the handwritten tests
we developed two random code generators. Experience
gained during past processor designs had taught us that a
certain class of bugs appear only when a number of com-
plex interactions occur within the CPU. It wasn't feasible to
create handwritten tests to cover all of these interactions
because the time requirements to do so would be prohibi-
tive. Additionally some of the tests would need to cross so
many interactions that it would be difficult to guarantee ade-
quate coverage with handwritten cases. Using a random
code approach, we used code generators to create the test
cases that found bugs in this class.

Another strength of the random code approach was that we
were able to take full advantage of the speed of postsilicon
testing. We could run all handwritten tests in a short time on
an actual processor. Random code generators made it pos-
sible to generate millions of different tests to keep the pro-
cessor fully exercised, at speed, for long periods of time.

One could create many conceivable random code genera-
tors, which could differ in many ways including the type of
code produced, fault latency, ease of debugging, repeatabil-
ity, and initialization. Design differences in random code
generators cause coverage differences (one generator may
be able to find a bug that another missed). Random code
generators mainly differ in the sequence of instructions and
in what constitutes initial and final processor state. In gen-
eral it is best to run code from as many different sources as
possible to ensure the best coverage.

Of the two random code generators that we developed, one
stressed the floating-point unit and another stressed the inte-
ger unit. Each of these generators produced tests
consisting of:

An initial processor state

A sequence of PA-RISC instructions

An expected final processor state.

The focused random approach worked extremely well during
the PA 7100LC verification effort. Using it, we were able to
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complete thousands of machine-hours of testing and identify
a majority of postsilicon bugs.

Our decision to emphasize random code testing paid off. Be-
cause of the proven effectiveness of the random approach,

we will probably continue in this direction and make evolu-
tionary changes to make the approach even more effective.

Application Software. In addition to handwritten and random
tests, we ran a variety of “real-world” software applications
to further ensure that we had found and fixed all bugs.
These applications were intended to help diagnose failures
suspected to be caused by the hardware. We booted operat-
ing systems (like HP-UX) shortly after chips were available.
We also conducted long-term operating system reliability
tests when more stable hardware and software became avail-
able. We filled out our array of application software tests
with benchmark suites and other applications.

Acceptance Criteria. A challenging question that engineers and
managers face during any postsilicon verification effort is
“When are we done?” Having clear criteria for the quality
required to ship the chip to customers is paramount. For the
PA 7100LC, we used the following acceptance criteria:

All failures are diagnosed to root cause.

No chip failures exist.

All handwritten code works.

Random code generators have run for a long time without
finding any failures.

Application software has run without any indication of hard-
ware bugs.

In-Circuit Emulation

In addition to constantly tuning existing design and verifica-
tion methodologies in areas where high-impact productivity
gains are essential to stay on the leading edge of the industry,
we also look for new breakthrough technologies and areas
for paradigm shifts. We considered in-circuit emulation as
such an area for the PA 7100LC.

In-circuit emulation means that a chip is modeled at the gate
level in field programmable gate arrays (FPGAs) and con-
nected directly to a chip socket in a real system running at a
reduced frequency. This allows the modeled chip to run real
system-level software.

Continual increases in chip complexity must be countered
with more effective verification to ensure high-quality first-
silicon chips. The goal is to have a perfect chip, but the re-
quirement is to prevent masking bugs. A masking bug is a
serious bug that causes a class of chip functionality to fail.
The verification team is unable to “see behind” the bug to
test for other failures in that area of functionality. The chip
must be redesigned to fix the masking bug and must pass
through fabrication before this functionality can be tested.
Emulation was viewed as a way to prevent these serious
masking bugs.

Besides ensuring high-quality first silicon, it is also desirable
to have enough presilicon simulation throughput to verify
any proposed postsilicon bug fix. Since turning a chip is
costly and time-consuming, incorrect bug fixes that cause
additional bugs must be eliminated.
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During the early phases of the PA 7100LC chip design effort,
in-circuit emulation technology came of age and was avail-
able through external vendors. We investigated this new
technology in depth. For us, in-circuit emulation was viewed
as a paradigm shift in verification and very attractive because
it would:

Provide near “real hardware” throughput with a presilicon
model

Allow thorough regression of any mask or full chip turns
necessitated by bugs or timing paths found during postsilicon
verification

Allow the firmware and software teams to test their code
before real hardware was available

Add another important debugging capability to our suite of
debug tools that allow us to isolate postsilicon bugs

Allow us to recreate real hardware failures on a presilicon
model and allow visibility to all internal nodes of the chip.

We also saw some areas of concern in pursuing in-circuit
emulation. We perceived in-circuit emulation as challenging
and risky because it was a new technology within a very
young industry. We lacked expertise in using emulation
tools, and it would be expensive to gain the necessary ex-
pertise to make in-circuit emulation part of our chip design
methodology. In addition to this, the emulation tools and
hardware were very expensive.

Our concern with technology risk was eased by several fac-
tors. We were promised very strong (on-site) support from
the emulation company that we chose. They assured us that
tools capable of handling large designs would be available
early in our design cycle. We had independent corroboration
from other HP entities, who had seen great success with
emulation in ASIC design efforts.

After weighing the potential advantages, risks, and our long-
term needs we determined to pursue in-circuit emulation.
We didn’t believe that emulation was absolutely critical to
our success on the PA 7100LC, but we felt that dramatic im-
provement in simulation throughput would be required to
verify the increasing complexity of our next-generation pro-
cessor design. This effort was simply the first step in a long-
term strategic direction.

Emulation Methodology

The real goal of our emulation effort was to plug the emula-
tion model into the physical system and run at frequencies
near 1 MHz. The team modified an HP 9000 Series 700
workstation to provide the required boot ROM, disk, and
I/O subsystem. A special processor board was designed that
allowed the emulation system to plug into the CPU socket.
This board also provided external cache (SRAM) and main
memory (DRAM). One challenge was to keep the DRAM
refreshed since the processor wasn’t running fast enough to
keep memory refreshed and make forward progress on the
code stream at the same time. We implemented a solution
that coalesced the processor memory transactions between
refresh cycles provided at a constant frequency by a module
external to the CPU. This made refresh transparent to the PA
7100LC emulation model. Fig. 3 shows our emulation setup.
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Along with these physical challenges, we also addressed
modeling issues. The emulation company provided an on-
site, experienced engineer to join our emulation team. The
preliminary goal was to take a substantial top-level block
netlist and prove that our style of custom design would emu-
late successfully. We chose a block that contained many
unique and difficult-to-model elements. It contained custom
data path blocks and some control blocks, and included
some large regular arrays such as register stacks, TLB, and
internal cache. Because of their size and regular structure,
we chose to model the cache, register stacks, and TLB on
external component boards using TTL parts and PALs. We
turned to industry tools to translate our library of custom
cells into emulation gates, but quickly found that the tools
were incapable of generating accurate gate-level models. We
were forced to create handwritten translations for the entire
library to make progress.

Once we had completed this initial block, we ran the model
in cosimulation mode with a Verilog simulator. The emula-
tion hardware modeled our target block, while the Verilog
simulator modeled the rest of the PA 7100LC. The models
exchanged stable input and output values after every CPU
clock transition. This approach allowed turn-on and testing
of the external component boards as well as flushing out of
modeling issues.

Next, we attacked the full chip. Our emulation team created
a full chip model, which was partitioned and programmed
into the FPGAs in the emulation boxes. This became a pain-
ful process as we learned that the hardware and software
had never been used on a design of this size, and fatal tool
failures stopped progress many times.

We achieved our first working model that ran through all the
firmware code shortly after the PA 7100LC chip achieved tape
release. We debugged all firmware code before first silicon
arrived from fabrication. This made silicon turn-on much
faster than would have been possible otherwise. We resolved
some nagging emulation failure modes in the difficult-to-
model floating-point circuits within one month of receiving
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Fig. 3. Emulation setup for the
PA 7100LC.

the first silicon chips. This emulation model allowed exten-
sive testing on the final chip specification before the masks
were released to fabrication. Only one hardware bug was
found using emulation.

From our emulation efforts we learned the following:

* Our method of custom VLSI design was difficult to model in

emulation gates. Many unanticipated race conditions were
found which had to be resolved. For example, we allow
races (e.g., between a latch’s data signal and its enable sig-
nal) that we can guarantee will be won on the chip. How-
ever, with uncertain delays on these signals within the
FPGAs, these races are easily lost. We also found that
wire-OR logic is very difficult to model.

* We found that electrical characterization was the limiting

issue for shipping products in volume. Emulation does not
help this problem directly. Although it does help to prevent
masking bugs, it may not actually shorten the ship-release
date.

Even though custom VLSI chips are much more difficult to
emulate than ASICs, in-circuit emulation is a viable technol-
ogy. As emulation technology matures, the effort required to
model complex CPUs will become more reasonable. Because
of the immaturity of in-circuit emulation technology at the
time we were using it, we were only able to make a minor
contribution to the development of the PA 7100LC with this
technology.

The learning curve for emulation technology was steep, but
this effort can be seen as successful when used as a stepping
stone to a new technology paradigm. We identified many
issues and shortcomings with using current emulation tech-
nologies to accelerate vector throughput. We can now con-
tinue to move towards either applying more mature emula-
tion technology or developing new approaches that better
address the issues that we identified.

Postsilicon Electrical Verification

The goal of postsilicon functional verification is to identify
failures caused by inappropriate logic within the chip. These
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functional failures generally manifest themselves on every
chip that we manufacture and will be unrelated to the oper-
ating point (e.g., temperature, voltage,or frequency) of the
CPU.

Electrical failures are another class of failures that we sought
out during the postsilicon verification effort for the PA
7100LC. Electrical failures cause the chip to malfunction and
typically have a root cause in some electrical phenomenon
such as:

Ground or power supply noise on the board or chip
Coupling between signals

Charge sharing

Variation in FET speed or drive capability caused by
variation in the manufacturing process

Leakage related phenomena

Race conditions

Unforeseen interchip circuit interactions.

Because the integrated circuit manufacturing process varies
slightly with time, electrical failures may or may not be pres-
ent on all chips that are produced. Further, certain operating
conditions will typically exacerbate the failure. Sometimes a
failure will occur at any operating point and can be difficult
to distinguish from a functional failure. However, most will
be dependent upon some parameter of the chip’s operating
point.

To deal appropriately with failures of this class, we staffed
an electrical verification effort for the PA 7100LC that was
mostly independent from its functional verification
(described earlier). The goals of this effort were to:

Identify, isolate to root cause, and repair all failures within
the operating range possible in customer systems

Identify and isolate to root cause any failures within a signif-
icant, well-defined region of margin outside of this operating
range.

The first goal is clearly necessary to provide quality systems
to customers. We created the second goal with the knowl-
edge that in some cases, understanding the root cause for
failures outside of our expected operating range would be
beneficial. Sometimes this knowledge would enable us to
make proactive design changes which would increase chip
yields, resulting in lower chip and system costs. Such knowl-
edge is also useful when moving the chip into a higher-fre-
quency range or a new process technology.

To meet these goals, we instrumented several systems so
that we could independently control each of the CPU supply
voltages and the operating frequency of the system. We inter-
faced each set of controlling instruments to a host computer
which could systematically vary the operating point parame-
ters, direct the system under test to run a variety of possible
tests, and observe and log the results of those tests. We
placed each system under test in an environmental chamber
that was capable of varying the temperature from -40°C to
100°C. In each system under test, we also varied system pa-
rameters such as memory loading and I/O bus loading.

In the presence of an electrical failure and the appropriate
operating conditions, certain code streams will not evaluate
as expected. To ease the task of isolating electrical failures,
we created test code specifically for electrical verification
that stressed the various interfaces and functional units of
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the chip in turn. Each segment of this test code would indi-
cate its progress as it ran. This allowed us to isolate a failure
quickly to a particular, very short segment of the test code.

In addition to this electrical verification code, we leveraged
the random code generators used by the functional verifica-
tion team, and ran the code sequences that they produced at
the corners of the PA 7100LC’s operating region.

Using this data generating and collection system, we were
able to create graphs that indicated passing and failing code
sequences as a function of voltage, frequency, temperature,
system conditions, and IC process. By inspecting the operat-
ing point dependencies (or lack of dependencies) of a fail-
ing code stream, we could gain insight into the root cause
for a failure. To confirm our root cause analyses and poten-
tial fixes, we created new handwritten test codes, altered
existing silicon using focused-ion-beam milling, and per-
formed electron beam probing of chips in systems.

The PA 7100LC’s postsilicon electrical verification effort en-
sured that the chip would perform well in a wide range of
electrical environments. It identified easily repaired yield
limiters that allowed us to maximize yield and minimize the
cost of the CPU. Each of these successes allowed our system
partners and customers to be more successful in meeting
their goals.

Debug and Test

Since the PA 7100LC processor was designed to be the core
component of a low-cost workstation line, the factory cost
goals and expected volumes clearly indicated that careful
attention to ease of test and manufacturability was necessary.
The following test features were defined based upon design
and manufacturing needs:

Parallel test vector capability in excess of 100 MHz

IEEE Standard 1149.1-compatible boundary scan interface
On-chip clock gating circuitry

Retention of internal state when the chip clocks are halted
Internal scan with single and double clock step capability
Fully static operation to support off-chip Ipp¢ testing
Signature analysis capability for testing the on-chip
instruction buffer

At-speed capture of internal states by scan registers.

To meet manufacturing cost goals, the PA 7100LC had
aggressive quality and test time goals compared with our
previous processor designs. Both of these items significantly
affect final chip cost. A test methodology was developed
early in the design phase to facilitate the achievement of
these goals. The methodology encompassed chip test and
characterization needs and manufacturing test needs.

Testing is accomplished through a mixture of parallel and
scan methods using an HP 82000 semiconductor test system.
The majority of testing is done with at-speed parallel pin
tests. Tests written in PA-RISC assembly code cover logical
functionality and speed paths and are converted through a
simulation extraction process into tester vectors. Scan-based
block tests are used for circuits such as standard-cell control
blocks and the on-chip instruction buffer which are inher-
ently difficult to test fully using parallel pin tests. Ippg mea-
surements are also performed after some parallel tests
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to provide additional defect coverage. The parallel test se-
quence is 600,000 states long, and 42 Mbits of scan vectors
are used during scan testing.

To meet our test quality and cost goals, we implemented
two new chip-test techniques that had not been used on
previous PA-RISC implementations: Ippg testing and sample-
on-the-fly testing.

Ippg Implementation

Ippg testing is a test methodology in which the presence of
defects is detected by measuring dc current when the chip is
halted. Nondefective full CMOS gates draw static current
made up of leakage currents that are in the nA range. How-
ever, defective gates can draw currents many orders of mag-
nitude higher. If a current measurement is made on the
power supply during a static state, a good chip will draw
very little current and a defective chip will draw much more.
Ippg has high observability and detects many different types
of defects. It was decided early in the design of the CPU that
Ippg test capability would be a desirable test feature. Ippg
test capability was also desirable because it substantially
reduces static power consumption.

Design Rules. To support Ippg testing, most of the circuits
leveraged from past PA-RISC implementations that drew dc
current were eliminated. For each case in which using a cir-
cuit that drew static current was the only reasonable design
solution, the circuitry was redesigned to be disabled with a
test signal during Ippg measurements. Most blocks contain-
ing pseudo-NMOS circuitry were redesigned using static
CMOS circuitry. Dynamic circuits were modified to eliminate
static current and to retain state while the chip is halted. No
FET gate is allowed to be in a situation where it could float
if the clocks are halted because this could possibly cause the
FET to turn on. Internal pullups on input pins are disabled
during Ippg measurements, including the IEEE 1149.1 test
pins. No drive fights are allowed in a static state. All nodes
make a full transition to a supply rail, which is accomplished
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through the use of restorative static feedback when full
CMOS transfer gates are not used in latches and multiplex-
ers. Any bus that could be completely tristated in any state
uses a bus holder circuit to maintain proper levels.

Special Considerations. The floating-point ALU, which was
leveraged from the PA 7100 processor, drew static current
and redesigning it was not feasible given our schedule con-
straints. However, it is possible to eliminate the static current
during Ippg measurements if the ALU is not evaluating dur-
ing the measurement. Since Ippg testing was not going to be
used to test the ALU, this was acceptable. Ippg testing dur-
ing parallel vectors is still possible, but if a floating-point
operation occurs that uses the ALU, the ALU loses its internal
state if Ippg test mode is enabled during the test.

Another area of consideration for Ippg involved the 1/0 bit
slices. The CPU uses two power supplies, Vpp and Vpy,
which are nominally at 5V and 3.3V respectively. Vpp sup-
plies all of the internal chip logic, while Vpy, is the supply
for the output driver pullup FETs. The input receivers on the
CPU normally draw static current when an output driver is
on that drives to Vpr. In addition, a circuit to hold the cur-
rent value on the pad can draw static current if the pad is
not driven to Vpp or ground. Therefore, when Ippg mea-
surements are taken, the output drivers are driven to ground
through the use of the boundary scan circuitry to eliminate
static current flow in the receiver and pad holder circuits
(see Fig. 4). The parallel tester drives input-only pins to Vpp
or ground as appropriate, including the IEEE 1149.1 interface
pins. The analog inputs of the clock buffers are also driven
to appropriate values to prevent static current.

These rules were easy to adhere to and followed our ratio-
nale to increase test capability with little design impact. Ippg
compliance was verified by running functional simulation
cases through an HP proprietory FET-level switch simulator
which also has the ability to check for static current
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violations. Because of careful attention to the design guide-
lines, only six Ippg violations were discovered when the
simulations were run, all of which were easily resolved.

Ippg Measurement

Ippo measurements are taken using a parametric measure-
ment unit on the HP 82000 tester (see Fig. 5). When a mea-
surement is to be taken, a vector sequence is run to place
the device under test (DUT) into a static state. After the dy-
namic current transients have settled, the measurement unit
is connected to the chip power plane with a relay, and the
regular Vpp supply is then switched out with relays. The
parametric measurement unit then supplies and measures
the current flowing into the DUT. The power plane for the
DUT is separated from the test fixture power plane by relays
connected between the chip and the test fixture. Bypass
capacitors to control supply noise are placed on Vpp on the
power supply side of the relays. This is important because
leakage currents in large electrolytic capacitors can be tens
of microamps, which would compromise the accuracy of the
measurement.

Typical measurements are in the range of 1 pA. The Ippg
current is dominated by reverse bias leakage current and
subthreshold leakage. Measurements are taken during wafer
and package test, and four measurements are made. Four
parallel vectors are used, which initialize the registers, cache,
TLB, and other state logic to zeros or ones and two patterns
of alternating ones and zeros (to check for bridging faults).
This provides a great deal of defect coverage while incurring
minimal test overhead.
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Ippq testing was very effective at catching defects on the PA
7100LC. Results indicate that 50% of scan test failures and
70% of parallel failures are caught by Ippq testing. In addi-
tion, other types of defects are caught that might not be
caught by conventional voltage-level testing, like gate oxide
shorts and some types of bridging faults. These can lead to
reliability problems over the life of the product, so it is im-
portant to catch them at the chip test stage.

We plan to do more directed Ipp testing on future chips,
using scan testing and parallel testing to set up and measure
current for specific chip states indicated by automatic test
generation tools. This should improve the level of coverage
we get for Ippg tests. However, one problem that may occur
is that off-FET leakage will increase in the effort to improve
FET performance in future IC processes. This has a direct
effect on the ability of Ippg techniques to resolve low cur-
rent defects. Additional techniques like power supply parti-
tioning may be necessary to make Ippg usable with more
advanced IC processes.

Sample-on-the-Fly Testing

An interesting new feature that is implemented on the CPU
enables scan registers to capture the internal state of the
chip while the chip is operating at speed in a normal system.
We refer to this capability as sample-on-the-fly testing. The
sample is nondestructive, and the data can be accessed
while the chip continues to execute code by scanning the
results out using the on-chip IEEE 1149.1-compatible test
access port (TAP). This feature was very useful for debugging
and characterizing system-level performance because it is
essentially a logic analyzer built directly into the chip which
allows access to over 4000 internal state values. Samples can
be taken with any IEEE 1149.1-compatible test controller and
appropriate software.

Internal Sampling. The internal sampling capability allows a
sample to occur when the architected PA-RISC interval timer
reaches a count that matches a preset value in a register and
the TAP circuitry is in a specific state. In the PA 7100LC the
interval timer on the chip is a 32-bit register that increments
by one for every clock cycle that occurs on the chip. An
additional 32-bit register provides a value to compare with
the value in the interval timer register. This value can be set
by doing a PA-RISC mtctl (move to control register)T instruc-
tion. When the interval timer value matches the value set by
the mtctl instruction, a comparator circuit generates a signal
which is normally sent to the control logic to cause an inter-
val timer interrupt to occur. This signal is also sent to the
TAP in this implementation. If the current TAP instruction is
ISAMPLE, the state of the chip is sampled into each scan reg-
ister on the following chip state by allowing each scan regis-
ter to update during the phase when the functional latch is
not being updated. An indication that a sample has occurred
is sent from one of the test pins when the sample is taken.
The pin can be monitored by an external IEEE 1149.1-com-
patible controller system to determine when data can be
shifted out of the chip. The shifting of the sampled data
does not corrupt the state of the internal logic.

t This instruction moves data to a control register. In this instance it is moving data to the
timer comparison register.
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Fig. 6. Sample-on-the-fly testing process.

If another sample is desired, the above procedure is simply
repeated. Fig. 6 summarizes the sample-on-the-fly process.

Results. Although sample-on-the-fly testing capability required
careful electrical and timing design, it has proven to be very
effective for debugging. It was vital at system frequencies
approaching 100 MHz, since our traditional external debug-
ging hardware was unable to function at this frequency be-
cause of electrical constraints. Sample-on-the-fly testing be-
came our only debugging tool in systems with
high-frequency critical paths. It was used several dozen
times in high-speed characterization and led to the resolu-
tion of several slow timing paths. It is clear that as CPU fre-
quencies increase, more debugging circuitry will need to be
included directly on the chip to assist in diagnosing function-
ality, speed, and electrical failures.

Debug Mode

The sample-on-the-fly technique allowed us to observe the
values present at many nodes, at one very specific point in
time, and at any operating frequency. Since this test tech-
nique uses the test access port to observe these values, it
provides information about the chip state at a relatively low
bandwidth. This information is an extremely valuable diag-
nosis tool for designers because it enables them to know
exactly when a problem is occurring.
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Sometimes, especially when a problem is not yet fully un-
derstood, a higher-bandwidth path to diagnostic information
is useful to designers. To allow designers access to larger
amounts of information across broad slices of time, we
added a debug mode to the PA 7100LC. This mode makes
available externally the values of several key internal buses
and control interfaces, on a state-by-state basis.

Software can place the chip in the debug mode by executing
a series of CPU diagnostic instructions. Software can also be
used to choose a set of signals to be made externally visible.
These signal sets were carefully chosen by the chip’s design-
ers as being indicative of the internal state of the CPU. Exam-
ples of signal sets that can be made visible using the debug
mode include:

Internal instruction and data buses

CPU to memory and I/O controller interface

Key cache controller state information.

When the chip is operating in the debug mode, it identifies
unused cycles on the I/O bus and uses them to drive the
selected debug information onto the I/O bus. The debug
circuitry can be programmed by software either to throw
away debug data during states when the I/O bus is unavail-
able, or to cause the CPU pipeline to stall during these states
so that no debug information is lost.

Externally driving debug information allows engineers to see
a sufficient amount of state information on a large enough
number of CPU states to be able to quickly direct further
efforts at locating postsilicon problems.

Both debug mode and sample-on-the-fly turned out to be
invaluable debugging aids in the highly integrated environ-
ment of the PA 7100LC.

Conclusion

Supporting design methodologies allow implementation of
the features that a product requires to meet its design goals.
The methodologies used to synthesize, place and route, sim-
ulate, verify, and test the PA 7100LC processor were crucial
to the processor’s success.
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An I/0 System on a Chip

The heart of the I/0 subsystem for the HP 9000 Model 712 workstation is
a custom VLSI chip that is optimized to minimize the manufacturing cost
of the system while maintaining functional compatibility and comparable
performance with existing members of the Series 700 family.

by Thomas V. Spencer, Frank J. Lettang, Curtis R. McAllister, Anthony L. Riccio, Joseph F. Orth, and

Brian K. Arnold

The HP 9000 Model 712 design is based on three custom

pieces of VLSI that provide much of the system’s functional-
ity: CPU, graphics, and I/O. These chips communicate via a
high-performance local bus referred to as GSC (general sys-
tem connect). This paper will focus primarily on the I/O chip.

A major goal of the Model 712 I/O subsystem was to pro-
vide a superset of the I/O performance and functionality
available from other family members at a significantly re-
duced manufacturing cost. This goal was bounded by the
reality of a finite amount of engineering resources, and it
was obvious from the start that integrating several of the I/O
functions onto a single piece of silicon could greatly reduce
the total I/O subsystem manufacturing cost. Each function of
the I/O subsystem was examined individually as a candidate
for integration. The value of maintaining exact driver-level
software compatibility was also evaluated with respect to the
advantages of minimizing the hardware cost for each of the
I/O functions.

The investigation indicated that the optimal solution for the
Model 712 was an I/O subsystem that centered around a
single piece of custom VLSI. The chip that resulted from this
investigation directly implements many of the required I/O
functions and provides a glueless interface between the GSC
bus and other common industry I/O devices. This chip was
named LASI, which is an acronym that refers to the two
major pieces of functionality in the chip, LAN and SCSI. The
LASI chip also provides several miscellaneous system func-
tions that further reduce the amount of discrete logic re-
quired in the system.

Chip Overview

The LASI chip was designed in a 0.8-um CMOS process and
is 13.2 mm by 12.0 mm in size (including I/O pads). It con-
tains 520,000 FETs and is packaged in a 240-pin MQUAD
package. LASI dissipates approximately three watts when
operating at the maximum GSC frequency (40 MHz). LASI
was designed primarily using standard-cell design methodol-
ogies although several areas required full custom design.

A functional block diagram of LASI is shown in Fig. 1. The
majority of circuitry in LASI is consumed by only two func-
tions, LAN and SCSI. Both of theses designs were purchased
from outside companies and ported to HP’s design process.
The SCSI functionality is exactly identical to the NCR 53C710
SCSI controller, and the LAN functionality is exactly identical
to an Intel 82C596 LAN controller.
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Other I/O functionality that is completely implemented on
LASI with HP internal designs includes: RS-232, Centronics
parallel interface, a battery-backed real-time clock, and two
PS/2-style keyboard and mouse ports. In addition, LASI pro-
vides a very simple way of connecting the WD37C65C flex-
ible disk controller chip to the GSC bus. The system boot
ROMs are also directly controlled by the LASI chip. The
Model 712 provides 16-bit CD-quality audio and optionally
supports two telephone lines. LASI provides the GSC inter-
face and clock generation (using digital phase-locked loops)
for both of these audio functions. Fig. 2 shows an approxi-
mate floor plan of the LASI chip. The floor plan shows the
general layout and relative size of each block.

LASI contains several system functions that help to minimize
the miscellaneous logic required in the system. This includes
GSC arbitration and reset control. LASI also serves as the
GSC interrupt controller.

It is possible to use up to four LASI chips on the same GSC
bus. LASI can be programmed at reset to reside in one of
four different address locations. The arbitration circuit sup-
ports chaining, and LASI can be programmed to either drive
or receive reset.

System Support Blocks

The following sections give a brief overview of each of
LAST’s major functional blocks that provide system support
functionality in the Model 712, but do not directly support or
implement any I/O function.

GSC Interface. The GSC (general system connect) bus con-
nects the major VLSI components in the Model 712. It is a
32-bit bus with multiplexed address and data. The bus con-
sists of 47 signals for devices capable of being a bus master.
The GSC bus is defined to run at up to 40 MHz giving a
peak transfer rate of 160 Mbytes/s.

The GSC interface block in LASI provides the connectivity
between the GSC bus and the wide variety of internal bus
blocks, many of which have different logical and timing re-
quirements. This block converts the GSC bus to a less com-
plex internal LASI bus. The LASI internal bus is very similar
to the GSC bus, but it is not as heavily multiplexed and is
more flexible than the GSC bus in that it easily accommo-
dates the simpler interface for the general-purpose 1I/O
blocks in LASI. The GSC interface block handles bus errors
and keeps track of parity information for other internal
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blocks, removing the associated complexity from these con-
trollers. Both master and slave devices reside on the LASI
internal bus.

LASI is a slave whenever the CPU initiates data transfer. As a
slave, LASI supports only subword and word write, and sub-
word, word, and double-word reads.* Internal slave devices
only need to support a subset of these transactions. There
are five different protocol behaviors for slave devices in
LASI: unpaced byte wide, paced byte wide, packed byte
wide, unpaced word wide, and paced word wide.

Unpaced devices, such as the real-time clock, don’t use a
handshake with the GSC interface, making their protocol
very simple. When a device requires a variable length of
time to transfer data it is called paced. The SCSI interface is
an example of a paced device. A packed device is one that
sends a sequence of bytes to make up a word or double
word. The boot ROM interface is an example of a packed
device.

* In PA-RISC a subword is typically one byte, a word is 32 bits, a double word is 64 bits, and
a quad word is 128 bits.
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Disk
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Fig. 1. LASI chip block diagram.

A simple strobe signal is asserted while internal data and
address buses are valid. Internal devices have no direct in-
teraction with bus errors.

As a bus master, LASI is capable of initiating subword, word,
double-word, and quad-word transactions on the GSC bus.
Once one of LASI’s internal bus masters owns the bus, it can
signify the start of a transaction by asserting the master_valid
signal (see Fig. 3). The device must then simultaneously
drive its DMA address (master_address), transaction type, and
byte enables onto the bus. On a read, the first available data
word will appear on the internal bus when the master_ac-
knowledge signal is asserted by the GSC interface. The GSC
interface will not accept another master_valid until all the read
data has been transferred.

If a timeout error, address parity error, or data parity error is
encountered on the GSC bus, the GSC interface will always
do a normal handshake for the transaction by asserting the
master_acknowledge signal. The transaction will complete as
usual except that an error is logged, disabling arbitration for
the device so it cannot be a bus master again. This means

April 1995 Hewlett-Packard Journal 37



Intel 82C596 LAN
Coprocessor

External
8-Bit Bus
Controller

NCR 53C710
SCSI Controller

SCSI

Phase-Locked Interface

Loop Clock
Generator

Phase-Locked
Loop Clock
Generator

:

that internal masters, at the hardware level, never need to
respond directly to bus errors. When the GSC interface block
sees a timeout error it will, from the perspective of its inter-
nal bus blocks, complete a transaction normally. In this way
the GSC’s error signaling mechanism can correctly terminate
an errant transaction without adding complexity to LASI’s
internal blocks.

Parity is generated in the GSC interface whenever LASI
sources data or an address on the bus. Parity is checked
whenever LASI is a data sink. LASI does not respond to
address parity errors on the GSC bus, which result in a
timeout error.

Arbitration. LASI contains six different blocks capable of initi-
ating a transaction on the GSC bus (see Fig. 1). To initiate a
transaction, a block must first own (or gain control of) the
GSC bus. Deciding which potential master owns the bus is
the job of LASI’s arbitration block. The arbitration circuit in
LASI provides internal bus arbitration for all six internal de-
vices and provides external GSC arbitration signals for the
CPU and an expansion slot. This capability allows LASI to
function as the central arbiter for the GSC bus in low-end
systems. The arbitration circuit can also be pin-programmed
at reset to behave as a secondary arbitration device that is

UUuUyuuuy

master_address X X

Clock

master_valid

master_acknowlege

Y oo ) o1

master_data

| o2 X

Fig. 3. Master read timing diagram.
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controlled by another arbiter. This feature allows LASI to be
used in larger systems that provide their own arbitration
circuit. A second LASI can also be used for I/O expansion
in low-end systems in which the first LASI is providing the
central arbitration. Support for multiple LASI’s on the same
GSC bus makes the speedy development of multifunction
I/O expansion boards a relatively simple task.

I Fig. 2. LASI floorplan.

The LASI design was simplified by requiring that the LASI
arbitration circuit gain control of the GSC bus before granting
the internal bus to potential bus masters. This saved a signifi-
cant amount of complexity in the GSC interface block as well
as greatly reducing the number of cases that needed to be
tested during the verification effort. This simplification does
create a couple of wasted GSC cycles for each transaction
initiated by LASI. However, this inefficiency has a negligible
impact on system performance.

The LASI arbitration circuit provides a simple round-robin
scheme that provides roughly equal access to all devices.
The arbitration circuitry keeps track of the identity of the last
device granted the bus and all currently outstanding re-
quests. (A simple truth table makes sure the GSC resource is
handed out fairly.) If no devices are requesting the bus, LASI
will default to granting the bus to the CPU. This has a small
positive impact on performance, given that the CPU is the
most likely device to initiate the next transaction. This ar-
bitration scheme helps simplify the arbitration circuit by not
requiring it to monitor bus activity. Each bus master is re-
sponsible for being “well-behaved” with respect to bus use.

The arbitration circuit plays a key role in the error handling
strategy for LASI. If an error occurs on the GSC bus while
LASI is the bus master, the arbitration circuit will not grant
the bus to additional internal devices until the CPU clears the
error by clearing a bit in the arbitration circuit. This simpli-
fies the design of other devices within LASI by not requiring
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them to use the error signal as an input to their state ma-
chines. When an error is detected, the transaction will termi-
nate normally, but no additional transactions will be allowed
until the situation is rectified by software.

Interrupt Controller. A total of 13 different interrupt sources
exist on the LASI chip. Each interrupt source drives a single
signal to the interrupt controller block. When the interrupt
signal is asserted, the interrupt controller block will master
the bus and issue a word write to the I/O external interrupt
register (I0_EIR), which is physically located in the CPU. The
data transferred to the 10_EIR contains a value that indicates
the source of the interrupt. The address of the I0_EIR and the
interrupt source value can be programmed by writing to the
interrupt address register located in LASI’s interrupt control-
ler block. Individual interrupt sources can be masked by
setting bits in the interrupt mask register.

LASI’s interrupt controller is designed to provide a variety of
interrupt approaches. The Model 712 uses only one of these
alternatives. Asserting an interrupt causes a write to the
I0_EIR to be mastered on the GSC bus. Upon receiving an
interrupt from LASI (via 10_EIR), the CPU will read the inter-
rupt request register located in LAST’s interrupt controller
block. One bit in the interrupt request register is designated
for each potential interrupt source in LASI. The interrupt
request register is cleared automatically after it is read by the
CPU.

Real-Time Clock. The Model 712 needs to keep track of time
when the system power is off. To this end, LASI provides a
battery-backed real-time clock. The real-time clock is log-
ically very simple and consists of a custom oscillator circuit
and a 32-bit counter that can be read and written to by soft-
ware. The 32-bit counter is used to keep track of the number
of seconds that have elapsed from some reference time.

The oscillator unit operates at 32.768 kHz and typically uses
less than 10 PA of current when operating on battery backup.
It uses a minimum of external circuitry (consisting of two
capacitors, a crystal, and a resistor) to accomplish its task.

Inside the LASI real-time clock, the 32-kHz signal is reduced
to a 1-Hz signal by a 15-bit precounter. The 1-Hz signal is
then used to increment the main 32-bit counter. Both the
counter and the precounter are implemented using simple
ripple counters. The 15-bit precounter is always cleared
when software writes to the 32-bit counter.

Phase-Locked Loop Clock Generators. The goal for the LASI
clock subsystem was to generate all the I/O subsystem clocks
from one crystal oscillator over a wide range of system fre-
quencies. The LASI clock block generates five different clock
frequencies required for the wide variety of I/O interfaces.
Three of these clocks are subharmonics of the processor
clock, and are generated using simple digital state machines.
However, the 40-MHz clock and the audio sample clock are
fixed-frequency clocks. The 40-MHz clock is used for the
SCSI back end and RS-232 baud rate generator, and the
audio sample clock is used for the external CODEC chip.
The frequency of this clock (16.9344 MHz to 24.576 MHz) is
selectable on the fly by the audio and telephone interface.

Two digital phase-locked loop circuits are provided in LASI
to generate the two fixed-frequency clocks from the CPU

[J Hewlett-Packard Company 1995

IEMIT Divide-by-M

Counter Numerically
Controlled

Oscillator

mnuLo

Filter

_ N
fclockout - ((Ml X M2) X f(:Iockin)

Divide-by-N

Counter

Fig. 4. Phase-locked loop clock controllers.

clock. These digital phase-locked loops implement the equa-
tion: fuockout = (felockin X N)/(M1 x M2), where N, M1, and
M2 are digital coefficients stored in LASI control registers.
felockin comes from the main system reference clock. The
felockout from one of the phase-locked loops is used for the
audio clock, and the fgjockout from the other phase-locked
loop is used for SCSI, RS-232, and other I/O functions. At
power-on, the processor initialization code (stored in the
flash EPROMSs) loads the coefficients corresponding to the
processor clock for the particular product. The audio sample
clock has two sets of coefficient control registers, which are
selected by a multiplexer based on a signal from the audio
interface. Fig. 4 shows one of the phase-locked loop circuits.

The phase-locked loop circuits are completely digitally con-
trolled, including a digitally controlled oscillator, digital phase
detector, counters, and scan test hardware. This design elimi-
nates analog control voltages which are susceptible to noise
and integration errors. The digitally controlled oscillator is a
ring oscillator with a digitally programmable delay element.
This design is capable of generating frequencies of up to 135
MHz. A combination of custom and standard-cell design
techniques are used in this design. Each phase-locked loop
cell measures 1500 um by 890 um.

General I/O Functions

The blocks shown in Fig. 1 that make up the general I/O
functions include the parallel port, audio and telephone inter-
face, RS-232 port, and flexible disk and boot ROM interface.
These 1/O functions originate from HP internal standard-cell
designs that were originally designed using Verilog RTL
models and then synthesized into a standard-cell design
using Synopsys. Some blocks were designed specifically for
LASI while others were leveraged from previous HP ASIC
designs.

Parallel Port. The parallel port is designed to be software
compatible with previous generations of HP 9000 Series 700
I/O subsystems while minimizing overall complexity and
chip area. This port allows interfacing to printers and other
peripherals supporting the industry-standard Centronics par-
allel interface. The parallel port signals are driven directly
from the LASI chip without additional buffering.

DMA was supported on previous workstation controllers
and therefore needed to be provided on LASI’s controller.
However, since no central DMA controller exists, all DMA
hardware is contained within the parallel I/O block. Since
parallel port bandwidth requirements are fairly modest
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Fig. 5. Address latching logic, and the data and control lines associ-
ated with the external 8-bit bus.

(about 400 kbytes/s), DMA is done by reading one 32-bit
word of data, releasing the bus, transferring one to four
bytes of data over the interface, and then requesting the bus
again. This approach keeps the DMA controller quite simple
while easily accommodating byte unpacking.

Keyboard and Mouse Controller. LASI provides support for two
IBM PS/2-style keyboard and mouse devices, making the
keyboard and mouse ports just like those used on a standard
IBM personal computer. These interfaces are new to the
Series 700 family so there were no software compatibility
issues, allowing us to optimize the design for low manufac-
turing cost. The interface provides only a minimal amount of
hardware and relies on the driver to do most of the work.
The interface also performs the serial-to-parallel and parallel-
to-serial conversion and does a small amount of buffering.
An interrupt is generated for every byte of data received
from the PS/2 device. The software overhead is not a perfor-
mance issue because of the extremely low data rate of the
interface.

Flexible Disk and Boot ROM Interface. LASI supports an external
8-bit bus that provides the capability to connect discrete
flash EPROM devices and a flexible disk controller with very
little additional logic. Fig. 5 shows a simple schematic of a
flash EPROM and the required address latching logic on the
8-bit bus. It was not cost-effective to integrate these devices
into the LASI chip. The 8-bit bus is also capable of support-
ing other types of 8-bit devices, giving some degree of flexi-
bility to the I/O system.

The 8-bit bus supports 1M bytes of address space (the first
half of the LASI address space). All transactions to this ad-
dress space on the 8-bit bus begin with two address cycles.
These cycles transfer bits 18:3 of the address to two
74GHT374-type 8-bit latches wired in series and controlled
by LASI. Multiplexing the address on the data lines saves 15
pins on LASI.

LASI is capable of supporting byte, word, and double-word
reads and byte writes to devices on the 8-bit bus. Word and
double-word reads are accomplished by doing multiple ac-
cesses to devices on the 8-bit bus and packing the bytes into
words before returning them on the GSC bus. Word and
double-word accesses require the address to be latched only
once since LASI drives the lower three address bits directly.
This greatly reduces the word and double-word access time.
Double-word reads take approximately 75 GSC cycles to
complete because eight accesses are required on the 8-bit
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bus. During each of the eight accesses a new address is pre-
sented to the flash EPROM which results in valid data being
driven to the 8-bit bus by this flash device. Byte accesses are
also relatively slow (12 GSC cycles) to support very slow
devices on the 8-bit bus. It is important to note that the 8-bit
bus is not electrically connected to the GSC.

LASI is designed specifically to support the WD37C65C flex-
ible disk controller on the 8-bit bus. The Model 712 uses a
personal computer style flexible disk controller instead of a
SCSI-based flexible disk controller because of the signifi-
cantly lower cost of the drive mechanism. The flexible disk
controller was not integrated into the LASI chip because of
the low cost of the WD37C65C chip and the potential for
SCSI drives to come down in cost in the future. The
WD37C65C shares the data bus and two control lines with
other devices on the 8-bit bus, but does not consume any of
the IM bytes of allocated address space. Supporting the
WD37C65C requires six dedicated signals and no external
glue logic. LASI supports the WD37C65C running in DMA
mode and provides the capability to move data directly be-
tween main memory and the WD37C65C without processor
intervention.

RS-232. The RS-232 block in LASI is an HP internal standard-
cell design that emulates the behavior of the National Semi-
conductor NS16550A. The Verilog HDL description for this

design was leveraged from previous HP ASIC designs used in
other members of the HP 9000 Series 700 workstation family.

One difference between this block and the NS16550A is that
its baud clock is derived from a 40-MHz signal. This allows
the block to share the phase-locked-loop-generated 40-MHz
clock with the back end of the SCSI block and eliminates the
need to support an external crystal or dedicated phase-
locked loop for baud clock generation.

Audio Interface. The Model 712 supports built-in CD-quality
audio and an optional telephony card.! The telephony card
is DSP-based and provides simultaneous access to two tele-
phone lines both capable of supporting voice, fax, or data
modems. LASI provides the interface between the GSC bus
and the audio and telephony circuitry.

An objective for the Model 712 audio subsystem was to
maintain complete software compatibility with previous dis-
crete designs. As a result, a good deal of the audio interface
circuitry on LASI is dedicated to supporting this compatibility
and is not optimized for minimal manufacturing cost.

The audio interface in LASI has two DMA channels that sup-
port the input and output audio streams. Each channel has
two 4K-byte pages of main memory continually reserved for
transferring data to and from the CS4215 CODEC. The buff-
ering in the interface is sufficient to guarantee isochronous
audio operation, given worst-case GSC bus latencies in the
Model 712. A wide range of audio formats is supported in-
cluding 8-bit or 16-bit words sampled in either linear, p-law,
or A-law format at a variety of sample rates from 8 kHz to 48
kHz.! The clock that determines the sample rate in the
CODEC is generated in one of LASI's programmable phase-
locked loop circuits. Communication between LASI and the
CODEC is accomplished via a full-duplex, serial bit stream.
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The high-speed serial bus over which LASI communicates
with the daughter card is similar to a concentrated highway
bus developed by AT&T but has several modifications. The
core pinout is the same using the signals data transmit (DX),
data receive (DR), and frame synchronization (FS), but the
definition of the bus has been extended to incorporate
control of external buffers and bus reset.

Communication with the telephony card is accomplished via
two TTY channels internal to LASI. The serial concentrated
highway bus data is multiplexed onto the high-speed serial
stream and sent to the CODEC and the telephony card. Since
TTY devices are used, the driver for the telephone system is
a highly leveraged version of the existing TTY drivers. The
audio interface and HP Teleshare? have a common digital
interface which resides in LASI. HP Teleshare is described in
more detail in the article on page 69.

Megacell I/O Functions

LASI contains two megacells whose designs were purchased
by HP from external vendors. The decision to do this was
based on maintaining software compatibility with past HP
9000 Series 700 workstations and the availability of engineer-
ing resources in HP. In both cases, an important goal was to
maintain the integrity of the megacell as much as possible. A
definite boundary was drawn between functionality lever-
aged from external vendors and new design work. This
boundary proved vital to functional verification and produc-
tion testing.

LAN Megacell. IEEE 802.3 LAN support is provided by a mega-
cell derived from the Intel 82C596 LAN coprocessor. To un-
derstand the integration, two key areas should be consid-
ered. First, importing the megacell at the artwork level
solved some problems and imposed others. Second, in the
area of interfacing, the integrated megacell eliminated a sub-
stantial number of chip pins but raised some protocol issues
that had to be overcome.

The LAN megacell was imported into our IC design flow at
the artwork level. Because the original Intel design was
done in a custom fashion, a netlist translation would have
required a significantly longer design time and a much larger
manpower deployment than the artwork translation. Even at
the artwork level, several modifications were made because
of differences between the original CMOS process design
rules and those of our target process.

One challenge in importing the megacell at the artwork level
was developing a verification strategy that allowed concur-
rent simulation of the megacell and the rest of the chip. Be-
cause the megacell vendor used proprietary simulators run-
ning in a mainframe environment, the vendor simulation
models couldn’t be used in our Verilog-based environment.
Hardware modeling was explored, but characteristics of the
part made this solution impractical. Converting either func-
tional representations or transistor-based representations to
Verilog HDL raised too many concerns about modeling accu-
racy. In view of these roadblocks, an unconventional ap-
proach to simulation modeling was employed. First, FET-
level model was extracted from the artwork. This model was
turned on and verified using Intel’s production test vectors
and a proprietary in-house simulator. Second, the in-house
simulator was compiled and linked into the Verilog simulator
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using a procedural-level interface. Third, a Verilog HDL in-
terface module was written that defined synchronization
events for data transfer between the two simulators, and the
model was reverified using production vectors. Finally, tests
were run that were specifically designed to test the interface
between the megacell and the internal bus.

Integrating the LAN megacell did provide a clear win by
improving the ratio of I/O to core area. When sold as a sep-
arate device, the Intel 82C596 has 89 signal pins devoted to
the host interface. Once the megacell was integrated, all of
these signals remained on-chip. In addition, 77 of the re-
moved signal pins had output drivers, so the associated
power and ground pins were eliminated.

The megacell did require a small amount of circuitry to inter-
face the 82C596 bus to the LASI internal bus. The primary
difficulty in this area was burst transactions. The system bus
wanted to know at the start of the transaction how many
words were to be bursted. In contrast, the 82C596 burst
protocol would only indicate whether or not it had one
more word to burst. To minimize complexity and avoid the
area associated with a FIFO buffer, the decision was made to
support only two-word bursts. This logical intersection of the
two bursting protocols provided a bandwidth utilization im-
provement over nonbursted transactions while minimizing
chip area and development time.

SCSI Megacell. To provide SCSI-2 support, LASI uses an NCR
53C710 megacell. This megacell was imported into our design
methodology as a netlist port. The design was translated from
NCR’s standard-cell library to HP’s cell library. A few unique
components were added to HP’s library specifically to sup-
port the SCSI megacell. While this created some challenges,
doing a schematic port allowed more flexibility to optimize
the aspect ratio of the megacell for a more efficient floorplan.
This technique also masked differences between NCR’s pro-
cess and HP’s process. Verilog models for this schematic port
were simulated in the conventional way.

The programming and SCSI bus model for the 53C710
megacell is completely compatible with the industry-stan-
dard component marketed by NCR. However, the host side
interface of the megacell is modified to eliminate the pads
and replace them with standard-cell components. These
components connect directly to internal megacell signals,
providing an interface to the chip’s internal bus.

The 53C710 can be a master and a slave device on the GSC
bus. LASI’s internal bus protocol for slave transactions re-
quires only combinational logic between the megacell and
the internal bus. As a slave, byte and word transactions are
supported in the megacell. If SCSI is a bus master, the inter-
face supports all the transaction types needed by the mega-
cell, with the help of a small state machine located in the
SCSI interface block shown in Fig. 2. SCSI data is typically
transferred using four-word read and write transactions on
the GSC bus.

Test Support

The primary objective for LASI testing was to provide an
extremely high level of coverage with a limited amount of
test development resources. Test support was complicated
by the diverse nature of the circuits on LASI.
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The non-megacell functionality is tested by a combination of
parallel pin vectors in conjunction with automatically gener-
ated scan vectors. LASI has an enhanced JTAG (IEEE 1149.1)
test block, 25 distributed internal I/O device scan chains,
and embedded test functionality in the I/O pads. The JTAG
test block contains a test access port and boundary-scan
architecture defined in IEEE standard 1149.1-1990 and pri-
vate instructions used for clock control, full-chip step con-
trol, and specific scan-chain functions.

To maximize test coverage for the two megacells and to
minimize the required test development resources, the vec-
tors used for production testing by Intel and NCR are used
on LASI. Doing this requires multiplexing all megacell signals
to pads to create what looks to the chip tester like an Intel
82C596 or an NCR 53C710, depending on the test mode.

This technique provides important verification and test cover-
age, but complicated the design. Each output pad includes a
three-input multiplexer, and each input pad drives signals to
three destinations on-chip, significantly increasing the load-
ing. The additional routing complexity required devoting
more space for routing channels, and the larger pads reduced
placement flexibility.

Conclusions

Integrating multiple I/O functionality onto a single VLSI chip
can significantly reduce the cost of the I/O subsystem. How-
ever, many system dependent factors and each candidate
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functionality need to be examined carefully in the system
context before deciding to integrate. Some important system
considerations are software compatibility, the cost of discrete
alternatives, the cost of printed circuit board area, customer
connect rate, available IC fabrication capacity, available engi-
neering development resource, and so on. The LASI chip
definition is the result of a detailed investigation into opti-
mizing an I/O system for HP’s low-end workstations.
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An Integrated Graphics Accelerator for
a Low-Cost Multimedia Workstation

Designing with a system focus and extracting as much performance and
functionality as possible from available technology results in a highly
integrated graphics chip that consumes very little board area and power
and is 50% faster and five times less expensive than its predecessor.

by Paul Martin

The graphics subsystem of the Model 712 workstation is a
high-performance, low-cost solution that sits directly on the
system bus of the Model 712 and consists of the graphics
chip, a video RAM-based frame buffer, and a few support
chips (see Fig. 1). The project goals closely reflect those of
the overall HP 9000 Model 712 program. In priority order
these goals were:

Very low manufacturing cost

Leadership graphics performance at entry cost levels
Architectural compatibility

Compelling new functionality.

Achieving these goals required a major step in the evolution
of HP entry-level graphics workstation hardware. Two philos-
ophies helped the team responsible for the graphics chip
achieve these goals. The first guiding philosophy was to
design with a system-level focus. We examined all required
functionality to decide whether it was best to implement it in

PA 7100LC

Graphics
Subsystem

Cache

General System Connect (GSC) Bus

Monitor

LASI Chip
(I0)

Graphics
Chip

Fig. 1. A block diagram of the essential components that make up
the HP 9000 Model 712 workstation.
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the graphics subsystem, the host processor, or some combi-
nation of the two.

The second philosophy was to extract as much performance
and functionality as possible from readily available technol-
ogy. We avoided leading-edge technology because of the cost
implications. We did make an attempt to use all the features
and performance available in mature technologies such as
video RAMs (VRAMs) and HP’s CMOS26B IC process.

This article describes the features and functionality of the HP
9000 Model 712 graphics subsystem. The considerations that
went into accomplishing the goals mentioned above are also
described.

Architectural Compatibility

The CRX window accelerator card?t introduced by HP in
1991 marked the beginning of a standardized graphics hard-
ware architecture for window system acceleration.! This ar-
chitecture was chosen for its simplicity of implementation
and for the clean model it presents to the software driver
developers. One of our fundamental design decisions was to
accelerate key primitives only—a RISC approach. Many ear-
lier controllers chose to accelerate a large gamut of graphical
operations such as ellipses, arithmetic pixel operations, and
so on. Graphics subsystems designed with these controllers
were typically expensive and exhibited only moderate win-
dow system performance. In the CRX and subsequent accel-
erators, including the Model 712’s graphics chip, we decided
to accelerate a carefully chosen smaller set of primitives,
which are described in the following sections.

Block Transfer. Writing pixels from system memory to the
frame buffer or reading from the frame buffer to system
memory is a block transfer (see Fig. 2). Writes are used to
transfer image data to the frame buffer. Reads are used pri-
marily to save portions of the screen temporarily obscured
by pop-up menus (see Fig. 2b).

t A window accelerator is the hardware that provides the images seen on the workstation
monitor. In particular, an accelerator is geared toward speeding up environments such as
the X Window System. The window accelerator enables the fast movement of windows on
the screen, scrolling of text, painting of window borders and backgrounds, and so on.
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Fig. 2. (a) Block transfer write. (b) Block transfer read. Window B
obscures window A. The obscured area is stored in system memory
for restoration when the area of window A is exposed.

Block Move. A block move involves transferring pixels from
one rectangular area in the frame buffer to another (possibly
overlapping) area in the frame buffer (Fig. 3). This is very
useful for moving windows on the screen and scrolling lines
of text within a window. The block move in the graphics
chip supports Boolean operations on the data being moved,
such as highlighting text by complementing colors.

Vectors. The ability to draw vectors (line segments) very
quickly is a requirement of design applications such as sche-
matic capture and mechanical design (Fig. 4). Thus, the
graphics chip has a high-performance vector generator that
creates X Window System-compliant line segments.

Fast Text. Characters are accelerated by the graphics chip
because of their pervasive use in window systems and the
large potential for performance improvement over software-
only solutions. A character is defined as a rectangular array
of pixels that contains only two colors called foreground and
background colors. Because there are only two choices, a
single bit is sufficient to specify the color of each pixel in a
character. This improves performance by reducing the
amount of data that is transmitted from the processor to the
graphics chip. For example, the hp character in Fig. 5 requires
only 8 bytes of data versus 48 bytes if this optimization had
not been made.

Rectangular Area Fill. This primitive is widely used by window
systems to generate window borders, menu buttons, and so
on (Fig. 6). It is also important for applications such as
printed circuit board layout and IC physical design. Rectan-
gular areas can be patterned using two colors or contain
only a single color. Hardware acceleration again gives a
large speedup over software-only solutions.

Cursor. Until the late 1980s when hardware cursors started
appearing in video ICs, screen cursors were typically gener-
ated using software routines. Hardware support is a good
trade-off because the circuitry is relatively simple, and a sys-
tem without hardware acceleration can spend a significant
portion of its time updating the cursor. A 64-by-64-pixel,
two-color cursor is supported directly in the graphics chip.

Frame Buffer

A ™~
N

Fig. 3. Block move. Rectangular area A is moved to a new, possibly
overlapping location.
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Frame Buffer

Fig. 4. Vector primitive. A vector is drawn by turning on successive
pixels using the Bresenham algorithm.

More complex functionality such as wide lines, circles and
ellipses, and 3D primitives are not accelerated directly by the
graphics chip because the application performance im-
provement was determined to be too low for the cost of
implementation. These functions can be efficiently imple-
mented in software. This is an example of the system-level
design trade-offs mentioned above.

An important aspect of this standardized architecture is
software leverage. It is estimated that several software engi-
neering years were saved on the graphics chip because the
architecture is virtually identical to that of the CRX graphics
subsystem. The savings in software engineering time was
applied to tuning and adding new functionality instead of
rewriting drivers.

Graphics Chip Operation

To get a better understanding of the operation of the graphics
chip let’s follow a graphics primitive through the block dia-
gram shown in Fig. 7. A vector is a good example because it
involves all of the blocks in the chip. Assume we have a
vector that starts at x,y coordinates 0,0, is 8 pixels long, and
has a slope of 1/2.

First, several parameters are calculated to set up the vector
in the graphics chip. This is done by graphics software (e.g.,
the X Window System) running on the PA 7100LC CPU. The
high-level specification of a vector is:

e Starting X,y coordinate
* Ending x,y coordinate.

System Memory
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Fig. 5. Fast text primitive. A character is a rectangular array contain-
ing two colors, foreground and background colors. Only a single bit
is needed to specify each color.
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This data is transferred across the GSC bus, through the GSC
interface, and into a set of registers in the macro function
unit. If these registers are already in use by the macro func-
tion unit the data is placed in a 32-word-deep FIFO buffer
that the unit can access when it becomes free. This increases
efficiency by allowing overlap between the software and
hardware processes. The macro function unit’s basic job is to
break down the high-level descriptions of graphics primi-
tives such as vectors, text, and rectangles into a series of indi-
vidual requests to draw pixels.

Drawing the vector is automatically triggered when the last
of the parameters described in the specification is written
into the macro function unit. The macro function then steps
its way along the vector using the Bresenham algorithm? and
issues requests to draw pixels. Since the slope of our vector
is 1/2, the y-coordinate is incremented after every two steps
along the x-axis as indicated in Fig. 8.

One might expect that a separate x- and y-address would be
specified for each pixel to be written. However, with vectors
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Fig. 6. Rectangular area fill primitive. A rectangle is defined by
corner, width, and height. Color or pattern may be applied.

there is excellent coherence between successive x- and y-ad-
dresses as pixels are drawn sequentially along the vector.
Thus, there are special bus cycles between the macro func-
tion unit and the data formatter that specify that the previous
x- or y coordinate should be incremented or decremented to
generate the new coordinate. This saves sending a full x,y
coordinate pair for each pixel drawn and significantly im-
proves bandwidth use on the bus. This optimization is also
useful for other primitives such as text and rectangles.

To Monitor

From Video Ports

[J Hewlett-Packard Company 1995

Fig. 7. A block diagram of the
components inside the graphics
chip.
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Fig. 8. Pixel representation of a vector that starts at coordinate 0,0,
is 8 pixels long, and has a slope of 1/2.

The data formatter’s job is to take requests and data from the
macro function unit and format them in a way that is best
for the frame buffer. In the case of our vector, the pixel ad-
dresses received by the data formatter are coalesced into
rectangular tiles that are optimized for the frame buffer. The
data formatter also recognizes when special VRAM modes
may be enabled to improve performance, based on the se-
quence of data it receives from the macro function unit. For
example, page mode (which is described in more detail later
in this article) would be enabled during a vector draw. The
data formatter also stores the current pixel address, vector
color, and a host of other parameters for other primitives.

The frame buffer controller generates signals for the VRAMs
based on the requests from the data formatter. The controller
looks at the sequence of writes and reads requested and
adjusts the timing on the VRAM signals to maximize perfor-
mance. For our vector, we only need to do simple writes
into the frame buffer, and cycles can be as fast as 37.5 ns per
pixel. More complex primitives might require data to be
read, modified, and written back, possibly to a different
frame buffer location.

The graphics chip supports an 8-bit-per-pixel frame buffer.
This means that, using normal techniques, only 256 colors
can be displayed simultaneously. This is not always ade-
quate for today’s graphics-oriented systems. Two methods
can be employed to increase the perceived number of colors.
The first is dithering, in which an interleaved pattern of two
available colors is used to visually approximate a requested
color that is not directly available. The second approach is
color recovery. Color recovery is visually superior to dither-
ing and is described later.

The Model 712’s entry-level configuration frame buffer uses
four 2M-bit VRAM parts which allows screen resolutions of
up to 1024 by 768 pixels. Adding four more VRAM chips on a
daughter card enables screen resolutions up to 1280 by 1024
pixels.

In addition to the screen image data, data for the cursor,
color lookup table, and attributes are stored in offscreen
frame buffer memory. This is an area in the video RAM
frame buffer that is never directly displayed on the CRT.
Data in this region is accessed in exactly the same fashion as
the screen image data, presenting a consistent interface to
software driver writers.

At this point our vector exists in the frame buffer, but cannot
be seen by the user. The video block is responsible for
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getting the screen image data from the frame buffer and
converting it for display on the monitor. This display process
is asynchronous to the rendering process which placed our
vector in the frame buffer.

To get the data in the frame buffer to the monitor, the video
controller first sends a request to the frame buffer controller
to access the frame buffer data. This data is requested in
sequential or scan-line order to match the path of the beam
on the monitor. Next, the data from the frame buffer is run
through a color lookup table to translate the 8-bit values into
8 bits each of red, green, and blue. The graphics chip sup-
ports two independent color lookup tables which are selected
on a per-displayed-pixel basis by the attribute data. This fea-
ture helps eliminate color contention between applications
sharing the frame buffer. Finally, cursor data is merged in by
the video block and the digital video stream is converted to
analog signals for the monitor.

This completes an overview of the life of a vector primitive,
from a high-level description in the software driver to dis-
play on the monitor. This basic data flow is the same for
other primitives such as rectangles and text.

Low Manufacturing Cost

Low cost was the primary objective for the graphics chip
design. As a measure of our success, the manufacturing cost
for the Model 712 graphics subsystem is 1/3 the cost of the
original CRX graphics subsystem. In addition, the entry-level
1024-by-768-pixel version of the graphics chip costs five
times less than the CRX subsystem.

These cost reductions were achieved primarily through an
aggressive amount of integration, which is summarized in
Fig. 9. The graphics chip represents the culmination of a
series of optimizations of the CRX family, combining almost
the entire GUI (graphical user interface) accelerator onto a
single chip. The only major function not currently integrated
is the frame buffer. Frame buffer integration is not feasible
today because RAM and logic densities are not quite high
enough and there is currently a cost advantage to using
commodity VRAM parts.

Since the introduction of the CRX subsystem, industry trends
such as denser and cheaper memory and inexpensive IC
gates have contributed to cost reductions in graphics hard-
ware. However, the graphics chip’s high level of integration
also contributes cost reductions in the following areas:

* Elimination of value-priced parts. The color lookup table

and the digital-to-analog converter (DAC) have traditionally
been an expensive component of the graphics subsystem.
This is especially true for systems capable of high resolution
(1280 by 1024 pixels, 135 MHz) and having multiple color
lookup tables, such as the one built into the graphics chip.
The digital phase-locked loop in the graphics chip replaces
another expensive external part.

* The density of FETs achieved with the graphics chip, over

4500/mm?, is significantly higher than with previous genera-
tions. This is important because silicon area is a major
contributor to overall design cost.

* IC packaging and testing contribute significantly to the cost

of each chip in a system. Reducing the number of chips elim-
inates this overhead. The graphics chip has a full internal
scan path and many internal signature registers to reduce
test time and chip cost significantly.
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e Printed circuit board area is a significant system cost. The
elimination of a large number of chips not only reduced the
printed circuit board area from about 60 in? for the CRX to
14 in? for the graphics subsystem in the Model 712, but
allowed the graphics to be integrated directly onto the
motherboard, eliminating connectors, a bulkhead, and other
mechanical components.

* Power consumption for the graphics subsystem in the Model

712 is only six watts. This low power consumption reduces

power supply capacity and cooling requirements and there-

fore cost.

Manufacturing costs associated with parts placement, test,

and rework are proportional to the number of discrete com-

ponents in a system. The graphics chip and and other chips
in the Model 712 include JTAG (IEEE 1149.1) capability and
signature generators to reduce the cost of printed circuit
board test.

Several factors made this high level of integration practical.
First, improved VLSI capabilities such as increased FET den-
sity, decreasing wafer costs and the availability within HP of
video DAC technology. Secondly, the desktop availability of
design and simulation tools capable of handling a model of
over 300,000 gates and 500,000 transistors. VLSI design and
verification were accomplished on HP 9000 Series 700 work-
stations using Verilog, Synopsys, and many in-house IC de-
velopment tools. The performance of the workstations al-
lowed the gate-level simulation of entire video frames (1/60
s of operation) of over 1.2 million pixels, which was the first
time this was accomplished within HP.

Performance

The integration described above has also resulted in signifi-
cant performance benefits. The two major reasons for the
performance benefits are wider buses and increased clock
rates.

Wider buses are possible between blocks when they are on
the same piece of silicon. Wider buses allow better commu-
nication bandwidth at a given clock rate, with very little cost
impact. A good example on the graphics chip is the much
improved communication between the macro function unit
and the data formatter which once existed as separate chips.
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Increased clock rates are possible because of the elimination
of chip-to-chip synchronization delays, pad delays, and
printed circuit board trace delays. This compounds the band-
width benefit of wider buses. HP’s CMOS26B technology
allows the bus interface, macro function unit, and frame
buffer controller blocks of the graphics chip to operate at 80
MHz while the three DACs and two color lookup tables of
the video block operate at 135 Mhz.

Intelligent system-level design also made major contributions
to performance. A simple example is the block transfer com-
mands which are responsible for transferring data from sys-
tem memory to the graphics chip and its frame buffer. A
special mode was introduced to the memory and I/O con-
troller in the PA 7100LC which allows fast sequential double-
word transfers without incurring the overhead of two single-
word transfers. This simple change boosted block transfer
performance by 50%.

Besides designing with a system-level focus, the other
driving philosophy was to extract as much performance and
utility as possible from available technology. A good example
of this is the use of the advanced features available in the
latest 2M-bit and 4M-bit VRAMs. HP has been instrumental in
proposing and driving many of these enhancements within
the JEDEC committee over the last few years. The more im-
portant features include:

* Page mode. This feature eliminates the need to send redun-

dant portions of the pixel address when writing into the
frame buffer. The result is that many operations can write a
pixel in as little as 37.5 ns versus the more typical 70 ns (see
Fig. 10). The key here is that these operations must occur
within a page of VRAM or a significant penalty is incurred.
By default this page is long and narrow, which is good for
block move and block transfer operations but bad for ran-
domly oriented vectors and rectangles. To achieve a better
performance balance, we made use of the next feature.
Stop register/split transfer. This feature allows the frame
buffer to be organized in pages that are more square than
long and narrow. Moving to this organization improves ran-
dom vector and small rectangle performance significantly
while only slightly reducing large horizontal primitive
performance (see Fig. 11).
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Fig. 10. An illustration of the performance improvement possible
using the page mode to write pixels into the frame buffer. This ex-
ample compares the performance of each mode when just four
pixels are transferred to the frame buffer.

Block write. As mentioned earlier, operations such as text
and rectangular fill frequently require only one or two colors
to be selected on a per-pixel basis. For this reason VRAMs
provide a mode (via a single bit) in which a pixel’s color
can be selected from an 8-bit foreground or background
color stored in the VRAMs. This translates into an 8x perfor-
mance improvement for these types of operations.

The graphics chip’s performance is summarized in Table L.
The table compares the performance of the graphics chip at
its theoretical hardware limit to its performance in 80-MHz
and 60-MHz Model 712 workstations and the Model 720
CRX. The final row in Table I, Xmark, is an industry-standard
metric that is an average of several hundred X Window Sys-
tem tests.

Note that the graphics chip’s hardware limit is significantly
higher than the Model 712 system performance limits. This
headroom means that future systems with higher levels of
CPU performance or even more highly tuned software drivers
will be capable of even better window system performance.

Table |
Summary of the Graphics Chip’s Performance
Benchmark Hard- Model Model CRX
ware  712/80 712/60 720
Limit
Block transfer 8-bit 96M O60M 5S2M 42M
pixels/s (frame buffer to
system memory)
Block transfer 8-bit 20 M M 8 M 2M
pixels/s (system memory
to frame buffer)
Block move pixels/s 47M  40M 31M 40M
(frame buffer to frame
buffer, 500 by 500 pixels)
Vectors/s (10-pixel, X 21 M 14M 11M 11M
compliant)
Text characters/s (6 by 1.0M 681k 38k 295k
13 pixels/character)
Rectangles/s (10 by 10 17M 790k 588k 270k
pixels/rectangle)
Xmark — 7.9 6.0 5.6

Compelling Functionality

Beyond improving performance and dropping cost substan-
tially it was an important goal to include useful new func-
tionality in the graphics chip. Below are some of the more
important additions.

Software Video Support. One of the design goals for the Model
712 was to be able to play MPEG and H.261 video se-
quences without expensive hardware acceleration. Through
careful analysis of the decoding process it became clear that
this was possible at full frame rates and high visual quality
using a combination of the following algorithmic, PA 7100LC,
and graphics enhancements:

Rewriting the standard decode algorithms to make them as
efficient as possible

Adding key instructions to the PA 7100LC

Implementing YUV-to-RGB color space conversion in the
graphics chip.
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Without Stop Register
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Fig. 11. Improving performance
with frame buffer pages that are
more square than long and
narrow.
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YUV encoding is used in many video formats. It allocates
proportionately more bits to encode the brightness or lumi-
nance (Y) of the image, and fewer bits to represent the color
(UV) in the image. Since the human eye is more sensitive to
brightness than color, this is an efficient scheme. However,
since the graphics chip’s frame buffer is stored in RGB for-
mat, a conversion from YUV to RGB is necessary.

This conversion is a good example of an operation that was
relatively expensive in software (a 3-by-3 16-bit matrix multi-
ply) but simple to do in the the graphics chip hardware. This
simple addition alone improves video playback performance
by as much as 30% and helps enable full 30-frame/s
320-by-288-pixel resolution MPEG playback on a Model
712/80.

HP Color Recovery. The graphics chip incorporates a new dis-
play technology called HP Color Recovery. Using a low-cost
8-bit frame buffer and HP Color Recovery, the graphics chip
can display images that are in many cases visually indistin-
guishable from those of a 24-bit frame buffer costing three
times more. This feature is useful for the following applica-
tion areas:

Visual multimedia (JPEG, MPEG, etc.)

Shaded mechanical CAD models

Geographical imaging system

Document image management

Visualization

High-quality business graphics.

A block diagram of the HP Color Recovery pipeline is shown
in Fig. 12.

The HP Color Recovery encoding scheme causes no loss of
performance for rendering operations and is related to tradi-
tional ordered dithering. Dithering is widely used to approxi-
mate a large number of colors with an 8-bit frame buffer and
is also available in the graphics chip.

The HP Color Recovery decode is much more sophisticated
and based on advanced signal processing techniques. This
circuitry cycles at 135 MHz and achieves over 9 billion op-
erations per second. HP Color Recovery is described in more
detail in the article on page 51.

Multiple Color Lookup Tables. Typically, entry-level workstation
and personal computer graphics subsystems have had only a
single color lookup table with a limited number of entries,
usually 256. In the X Window System this results in the an-
noying flashing of backgrounds or window contents when a
new application is started that takes colors from existing
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Fig. 12. The HP Color Recovery
pipeline.

applications. The graphics chip solves this problem in a ma-
jority of cases by providing two 256-entry color maps. For
most interactions in which the user is focused on a single
application and the window manager, this completely elimi-
nates the resource contention and results in a visually stable
screen (see Fig. 13).

Software Programmable Resolutions. One of the problems of
past workstation graphics subsystems is that they operate at
a fixed video resolution and refresh rate. This has posed
problems in configuring systems at the factory and during
customer upgrades. The graphics chip incorporates an ad-
vanced digital frequency synthesizer that generates the
clocks necessary for the video subsystem. This synthesizer,
based on HP proprietary digital phase-locked loop technol-
ogy, allows software configurability of the resolution and
frequency of the video signal. Thus, alternate monitors can be
connected without changing any video hardware. Currently
supported configurations include:

* 640 by 480 pixels 60 Hz, standard VESA timing
* 800 by 600 pixels 60 Hz
* 1024 by 1024 pixels 75 Hz and flat panel

1280 by 1024 pixels 72 Hz.

As new monitor timings appear, the graphics chip can sim-
ply be reprogrammed with the parameters associated with
the new monitor.

Summary

We created the graphics chip with the philosophies of system-
level-optimized design and optimal use of technology. This
enabled us to meet our goals of very low manufacturing
cost, leadership performance at our cost point, architectural
compatibility, and introduction of some important new
functionality.
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HP Color Recovery Technology

HP Color Recovery is a technique that brings true color capability to
interactive, entry-level graphics devices having only eight color planes.

by Anthony C. Barkans

For many years the only practical way to display high-quality
true color images was on a computer with a graphics subsys-
tem providing at least 24 color planes (see the definition of
true color on page 52). However, because of the high cost of
color graphics devices with 24 planes, many users chose
8-plane systems. Unfortunately, using these 8-plane systems
required giving up some color capabilities to save cost.

7
Bit Graphics

HP has developed a technique called HP Color Recovery
which provides a method for displaying millions of colors
within the cost constraints of an 8-plane system. For an ex-
ample of the image quality provided by HP Color Recovery
consider Fig. 1. Fig. 1a shows a close up of a jet plane stored
as a full 24-bit-per-pixel true color image. Fig. 1b shows the
same jet plane displayed using a traditional 8-bit-per-pixel

Competitive
8-—Bit Graphics
(Dithering)

@

r Recovi

O Hewlett-Packard Company 1995

Fig. 1. A true color image and its
dithered representations. (a) True
color 24-bit image. (b) Typical
eight-bit graphics dithered image.
(¢) An HP Color Recovery dith-
ered image.
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True Color

In this paper the term true color is used to define color reproduction such that the
underlying digital quantization of the color within an image is not discernable by
the human eye. In other words a continuous spectrum of color, such as in a rain-
bow, can be be displayed so that the color appears to vary continuously across the
image. In most computer graphics systems this is accomplished using 24 bits of
color information per pixel. With 24 bits, any single pixel can be displayed at one
of 224 (16.7 million) colors.

Some graphics systems may define true color to be represented by less than 24
bits per pixel.

system. Finally, Fig. 1c shows how the jet plane will be dis-
played when using HP Color Recovery in an 8-bit-per-pixel
mode on the HCRX-8 graphics device.

Of course, pretty pictures aren’t enough. Therefore, one of
the primary design goals for HP Color Recovery was to sup-
ply the additional color capabilities without giving up interac-
tive performance. Another goal was to be able to work with
all types of applications running in a windowed environment
such as the X Window System and HP VUE. The implemen-
tation of HP Color Recovery used in current HP workstations
meets these goals.

Traditional Eight-Plane Systems

Traditional eight-plane systems can display only 256 colors.
Two approaches have been employed to get the best results
with limited colors. The first is called either pseudo color or
indexed color. This method selects a set of 256 colors and
then limits the application to using only that fixed set of
colors. For many applications, such as word processing and
business graphics, this approach works reasonably well. This
is because the resultant images are made up of very few
colors. However, when an application needs more than 256
colors, such as realistically shaded MCAD (mechanical com-
puter-aided design) images or human faces in video se-
quences, then another approach is needed. Since more than
256 colors are required for these applications, a technique to
simulate more colors is used. For these applications a tech-
nique called dithering is employed. The idea of dither is to
approximate a single color by displaying two other colors at
intermixed pixel locations. For example, a grid of black and
white pixels can be displayed to simulate gray. Such a grid
of black and white pixels will indeed look gray when
viewed from a distance. The primary problem with dithering
is that since most people tend to work close to the display,
dithered images are viewed as having a grainy or textured
appearance (see Fig. 1b).

Color Theory and Dither

Before discussing the details of how HP Color Recovery
works, an overview of color theory as it relates to computer
generated images and dither should be helpful. This over-
view describes how the human eye is tricked into seeing
color, color precision in graphics, and a dithering method.
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Tricking the Human Eye

It is often noted that computer monitors use red, green, and
blue (RGB) to produce true color images. A reasonable
question to ask is: “Why use these particular colors?” If one
examines the spectrum of visible light, it can be seen that
red is at the end of the spectrum with the longest wave-
lengths that the human eye can see while blue is at the
other end. Note that green is in about the middle. Also note
that white is a mix of all colors. Therefore by mixing varying
amounts of red, green, and blue any color can be created.
For example, forcing both the red and the green CRT beams
to be on at any single location will result in a dot that ap-
pears yellow to the human eye.

Thus, one can create the visual appearance of any color by
mixing the red, green, and blue components at any pixel
location. However, it is interesting to note that the human
eye can also perceive a new color when the component
colors are mixed spatially. For example, a checkerboard of
red and green pixels will be perceived as yellow when
viewed from a distance. It is this spatial mixing of color to
form a new color that is exploited by dither.

Color Precision

In most systems that deal with true color, color is specified
to eight bits for each of the three color components: red,
green, and blue. The choice of eight bits is based on two
factors. First, the human eye cannot distinguish an infinite
number of shades because the dynamic range of the eye is
limited. For the most part shaded surfaces rendered with
eight bits per color appear smooth with the underlying
quantization not readily apparent to the viewer. The second
factor that works in favor of using eight bits per color com-
ponent as a standard is that eight-bit bytes are very conve-
nient to work with in a computer system.

Simple Dithering

When using a 24-bit color system, any displayable color
component can be specified using eight bits. For example,
consider the red component. When there is no red in a pixel
the red component is specified with a binary value of
00000000, which is a decimal 0. A full bright red is specified
as a binary number 11111111, which is decimal 255. Of
course, high-end display systems, such as the HCRX-48Z,
use 24 bits to store and display true color information. The
visual quality of these high-end displays is shown in Fig. 1a.
However, since low-cost systems typically have a total of
only eight bits per pixel to store the color information, an
approximation to the true color image is made. The most
common method is dither using three bits each for the red
and green components. This leaves two bits for blue. Using
fewer bits for blue is based on the fact that the human eye
has less sensitivity to blue. With fewer bits available per
color component, the quantization of the colors becomes
apparent to the viewer. The effects of using a limited num-
ber of bits for each color can be seen in Fig. 1b.

Dithering approximates any color by using a combination of
colors at adjacent pixels. When viewed from a distance the
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image appears to be the correct color. However, since dith-
ered systems can store only a limited number of bits in the
frame buffer, the primary task of the dithering logic is to
select the best set of values to use.

For dithering purposes it is convenient to think of each
eight-bit binary component of color as a number in a three
point five (3.5) representation. This representation means
there are three bits on the left side of the binary point and
five bits on the right side of the binary point. For example,
assume the true color value for red is given as the binary
number 01011000. In a 3.5 representation the number be-
comes 010.11000 binary, which is 2.75 decimal. Since the
final dithered values can only be three-bit integers, it can be
seen that using only numbers two and three would be desir-
able. Ideally, the dither would set 3/4 of the pixels to three
and 1/4 to two.

If we consider the original color component as being an
eight-bit value in a 3.5 format, then the dither values stored
in the dither table should be evenly spaced between
000.00000 and 000.11111 (decimal 0.0 to almost decimal
1.0). The output of the table is added to the original eight-bit
color component. Once the addition is complete the value is
truncated to the desired number of bits for storage in the
frame buffer. As a simple example assume that we are con-
tinuing to work with a red component that is originally spe-
cified as the binary number 01011000. In addition assume
that we are using a 2 x 2 dither to reduce the original 8-bit
color component to three bits. (The notation 2 x 2 dither
means that the dither pattern will repeat in a 2 X 2 grid
across the image.) To use a 2 x 2 dither, the least-significant
bits of the X and Y window addresses of the pixel are used
to index the dither table. The following example shows how
a 2 x 2 dither is applied to one pixel of the true color value
for red. Table I represents the values in a 2 X 2 dither table.

Table |
A 2 x 2 Dither Table
Indexes Dither Value
LSB of Y LSB of X Binary Decimal
0 0 .10100 .625
0 1 .01100 375
1 0 .00100 125
1 1 .11100 875

At the upper left of the window the X and Y addresses are
both 0. To dither the data for this pixel location using our
color value for red we do the following:

Binary Decimal
Input color 010.11000 2.750
Dither value (from Table I) +.10100 +.025
Result 011.01100 3.375
Truncated three-bit value 011 3

Therefore at address 0,0 we would store a 011 binary in the
frame buffer for red. Applying the above dither would result
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X Address

Y Address

Fig. 2. Results after applying dither. Each box represents a pixel
location on the display screen. For example, address (0,0) is defined
as the upper left corner of the display. Also note that the numbers
stored at each pixel location represent the results of applying the
dither values given in Table I to a red component of color originally
specified as 01011000 binary (2.75 in our 3.5 notation).

in three of the four pixels within every four-pixel block being
stored in the frame buffer with a value of 011 (see Fig. 2).
The fourth pixel in each block, the one with the LSB of Y set
to a 1 and the LSB of X set to a 0, will have a 010 stored in
the frame buffer. When a region of this color of red is
viewed from a distance the color would appear to be the
correct value of 010.11000. If the dithered jet plane shown in
Fig. 1b is examined, it can be seen that it is dithered using a
method similar to the one described above.

From a distance the colors in the dithered image are inte-
grated by the eye so that they appear correct. However, the
fundamental problem with dither is that most dithered im-
ages are viewed up close and so the dithering pattern is
noticeable in the image.

Dithering Is Key

It is important to realize that to approximate any true color
value, a spatial region of the screen is required. This often
leads people to say that dithering is a method that trades off
spatial resolution for color resolution. However, this is mis-
leading. Some people believe that a single-pixel object can-
not be dithered. Actually a single-pixel object can be dith-
ered. The result is that the object will be one of the two
dither colors. Going back to the example above, a single-
pixel red object specified as binary 01011000 (decimal 2.75)
will be stored at any single pixel location as either binary 010
or 011 (decimal two or three). Taken by itself, any single
pixel is not a perfect approximation of the true color. How-
ever, it is still a reasonable approximation.

The idea of being able to encode each pixel in the image
independently by using dither is key to enabling color re-
covery to work in an interactive environment. As a historical
note it should be mentioned that over the last few years
several people have developed methods to bring true color
capabilities to eight-bit graphics devices. However, these
attempts have been based on complex multipixel encoding
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schemes. For the most part they have applied data compres-
sion techniques to the data stored in the frame buffer. These
methods have produced high-quality images, but the encod-
ing is so complex that the user must give up interactive per-
formance to use them. Because of the performance prob-
lems these methods have not been widely adopted by the
computer graphics community.

HP Color Recovery

The simplest explanation of HP Color Recovery is that it
performs the task your eye is asked to do with an ordinary
dithered system. In essence, an HP Color Recovery system
takes 24-bit true color data generated by an application and
dithers it down to eight bits for storage in the frame buffer.
Then as the frame buffer data is scanned from the frame
buffer to the display, it passes through specialized digital
signal processing (DSP) hardware where the work of pro-
ducing millions of colors is performed. The output of the
DSP hardware is sent to the display where millions of colors
can be viewed. It is important to recognize that since the
data stored in the HP Color Recovery frame buffer is dith-
ered, thousands of applications can work with it. It is also
important to recognize that these applications will run at full
performance in an interactive windowed environment. In
other words, applications do not need to be changed to take
advantage of HP Color Recovery.

The Process

HP Color Recovery is a two-part process. First, true color
information generated by the application is dithered and then
stored in the frame buffer. The type of application generating
the true color information is immaterial. For example, true
color data can be generated by a CAD application program
or as part of a video sequence. The dithering may be done
in a software device driver or in the hardware of a graphics
controller. It is very important to note that each pixel is
treated independently. This pixel independence is key to the
ability to work within an interactive windowed environment.
The second part of the HP Color Recovery process is to filter
the dithered data. The filter is placed between the output of
the frame buffer and the DACs that drive the monitor. Fig. 3
shows the HP Color Recovery process starting from when an
application generates true color data to when the image ap-
pears on the screen. Note that “application” refers to any
program that generates true color data for display.

Hardware

24-Bit True Dither

Color Data

Application Driver

Software
Dither

After the application generates the data, it is sent to the de-
vice driver. The function of the driver is to isolate the applica-
tion from hardware dependencies. The driver is supplied by
HP. It causes hardware dithering to be used when possible.
However, there are times when the driver must perform the
dither in software. It is important to note that compared to
other dithered systems, there is no performance penalty suf-
fered by an application using HP Color Recovery dither.

The frame buffer stores the image data. Note that in most
current systems the output of the dithered frame buffer is
sent to the display, resulting in the common patterned ap-
pearance in the image. However, with HP Color Recovery,
as the frame buffer data is scanned, it is sent through a spe-
cialized digital signal processing (DSP) circuit. The DSP is a
sophisticated circuit that removes the patterning from the
dithered image stored in the frame buffer. This circuit per-
forms over nine billion operations per second. Despite this
enormous amount of processing the circuit is surprisingly
small. It is this small size that makes HP Color Recovery in-
expensive enough to be considered for inclusion in low-end
graphics systems.

The Dither Process

In HP Color Recovery the quality of the displayed image
depends on the dither used to encode the image. During the
development of HP Color Recovery it was found that the
size of the dither region determines how well a color can be
recovered. It was found that from a region of 2N pixels the
technique can recover about N bits of color per component.
Therefore, an eight-bit frame buffer that stores data in 3-3-2
format (3 bits each for red and green and 2 bits for blue)
would need a dither region of 32 pixels for each color com-
ponent to recover 5 additional bits. Thus, using a 32-pixel
dither region, an area in the image of uniform color can
have the same visual quality as an 8-8-7 image. For example,
the sky behind the jet plane in Fig. 1c was recovered to
within 1 bit of the original 24-bit true color data shown in
the top image.

Most dithers use a 4 x 4 dither region. Since a 4 x 4 region
covers only 16 pixels, a larger dither region is needed for HP
Color Recovery. Therefore, a dither table with 32 entries
organized as 2 x 16 was selected. (The reason for this odd
shape is discussed later in this paper.) In addition, most dith-
ers are as simple as the one described earlier in this paper.
However, there are cases in which a simple dither does not

8-Bit Data

| Recovered True Color Data »)

IN— True Color
Image Fig. 3. HP Color Recovery pro-

cess flow.
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work well. Note that in using the simple dither method de-
scribed above, all true color values from binary 11100000 to
11111111 would dither to 111. For HP Color Recovery the
dither table includes both positive and negative numbers.
This improves the color range over which the dither is
useful.

The HP Color Recovery dither is a little different from most
dithers. However, it is on the same order of complexity. It
should also be noted that the HP Color Recovery dither is
included in the hardware of all HP graphics workstations that
support this technique. This means that using the HP Color
Recovery dither does not cause a decrease in performance.

The Filter Process

In the example given earlier a red color component repre-
sented by the binary value 01011000 (2.75 in decimal) was
used to illustrate simple dithering. For this example we used
a 2 x 2 dither region in which the end result of the dither
was that 3/4 of the pixels stored in the frame buffer were set
to 3 (011) and 1/4 of the pixels were set to 2 (010). It is easy
to see that if we average the four pixels in the 2 x 2 region
we will recover the original color. This can be done as fol-
lows:

([value_1 x number set to_value 1] + [value_2 X
number set to_value 2])/total number pixels

Using the example data we obtain: ([3 X 3] + [2 X 1])/4 = 2.75.

This averaging works very well in regions of constant color,
such as the sky behind the jet plane in Fig. 1. However,
there is one fundamental issue that must be addressed for
HP Color Recovery to be viable and that is how to handle
edges in the image. If edges are not accounted for then the
resultant image will blur. The two-dimensional representa-
tions of an area of a display screen shown in Fig. 4 are used
to illustrate the problem of edge detection and the way the
problem is addressed in HP Color Recovery.

As in Fig. 2, each box represents a pixel location on the dis-
play screen. In Fig. 4a the numbers represent the original
true color data for one of the color components (e.g., red) in
a 24-bit per pixel system. Fig. 4b shows the same region
after simple dithering has been applied. Fig. 4c shows the
pixel values after the application of HP Color Recovery. Fig.
4c pixel values represent the color data that would be dis-
played on the computer screen.

Region A in each of these figures is an area of constant color,
whereas region B encompasses an edge. For illustration pur-
poses, the dither region is again assumed to be 2 x 2 pixels.

The dithered color data shown in Fig. 4b is derived from the
original color data shown in Fig. 4a and from using the sim-
ple dithering technique described in connection with Table
I. The data shown in Fig. 4b is what would be stored in the
frame buffer and displayed in a typical dithered system (e.g.,
Fig. 1b).

When it is time to display Pix_1 the data for the four pixels
shown as Region A in Fig. 4b would be sent to the filter. The
data stored in the region would be summed and then di-
vided by the number of pixels in the region. The sum of the
pixels in Region A is 11 and 11/4 = 2.75. Thus, the output of
the filter when evaluating Pix_1 would be 2.75. This output
value would be displayed on the computer display at Pix_1’s
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Fig. 4. (a) Pixel values for the original 24-bit per pixel color data.
(b) The color data from Fig. 4a after it has been dithered and placed
in the frame buffer. This would be the data displayed in a typical
dithered system with the result appearing as in Fig. 1b. (¢) The pix-
els from Fig. 4b after applying HP Color Recovery.

location. Note that the output of the filter is the exact value
of the original data at that point in Fig. 4a.

The next pixel along the scan line to be evaluated is Pix_2.
The filter region for evaluating Pix_2 would include the two
rightmost pixels of region A and the two leftmost pixels of
region B (see Fig. 4b). Applying the filter operation for Pix_2
again results in the output value matching the value at that
location in Fig. 4a (2.75).

If the evaluation is done on Pix_3, the pixels in region B
would be summed and then divided by the number of pixels
in the region, and the result would be 4.50. This value is
very different from the original data value of 2.75 in Fig. 4a.
Using the value of 4.50 at Pix_3 would result in edge smear-
ing. To solve this problem a special edge detector that looks
for edges in noisy data is used. The idea is to compare each
pixel in the filter region with a value that is within 1 of the
pixel being evaluated. Since the data stored at Pix_3 is a 3,
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only pixels within region B that have a value of 2, 3, or 4
would pass the edge compare. The values that pass the edge
detector are then summed and the total is divided by the
number of pixels that pass the edge compare. For Pix_3, only
Pix_3 and the pixel below it would pass the edge detector.
Summing the two passing values together and dividing by 2
gives a result of 2.50. This value is slightly different from the
original value of 2.75, but it is a better estimation to the orig-
inal than the 4.50 obtained without the edge detection. The
displayed values for the entire example region are shown in
Fig. 4c.

Software Considerations

Since dithered frame buffers are in common use today, many
existing software applications can work with a dithered
frame buffer. All of these applications could work with HP
Color Recovery.

On products that use the Model 712’s graphics chip, which
is described in the article on page 43, and HP’s Hyperdrive
(HCRX), HP Color Recovery is supported. In these products
we have chosen to have HP Color Recovery enabled as the
default for 3D applications run in an eight-bit visual environ-
ment. Thus when using the 3D graphics libraries Starbase,
PHIGS, or PEXIib, and opening an application in an eight-bit
visual environment with true color mode, HP Color Recovery
will normally be enabled. Of course, setting an application
to use a pseudo color map will disable HP Color Recovery
and give the application the desired pseudo color capability.
Because Xlib is tied into the pseudo color model rather than

2x16 Register Array (Clocked at the Pixel Clock Rate)

HHHHHEHE -

the 3D libraries, Xlib applications leave HP Color Recovery
off by default. However, a mechanism is supported that
allows HP Color Recovery to be enabled when using Xlib.1
The biggest change is that Xlib applications must do their
own dithering.

Implementation

The implementation of HP Color Recovery was based on the
assumption that color recovery would be most useful in
entry-level graphics products. Entry-level graphics products
are defined as products in which there is storage for only 8
bits per pixel in the frame buffer. These same products that
benefit the most from HP Color Recovery are also the ones
where product cost must be carefully controlled. Therefore,
the implementation effort was driven with a strong sense of
cost versus end user benefit.

Dither Table Shape. As mentioned earlier, the dither region
shape used with HP Color Recovery is 2 X 16. The optimum
shape would be closer to square, such as 4 x 8. However, the
filter circuit needs storage for the pixels within the region. A
2 % 16 circuit requires that the current scan line’s pixel and
the data for the scan line above be available. This means
that as data for any scan line enters the circuit, it is used to
evaluate pixels on the current scan line. In addition, the data
is saved in a scan line buffer so it can be used when evaluat-
ing the pixels on the next scan line (see Fig. 5). It should be
noted that the storage for a scan line of data uses approxi-
mately one half of the circuit area in the current implemen-
tation. Therefore, if a 4 X 8 region had been used, three scan

Scan Line Buffer

Data from

J e—
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Data Current
from Scan Line
Frame
Buffer
Logic
Logic for in Each
Inner Loop of Cellls
Equation 1 Shown
in Fig. 6.
Summation
Logic for Adder Tree
Equation 1

X =Pixel Being Evaluated

Fig. 5. A block diagram of the HP Color Recovery filter circuit.
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Data for
Pixel in
Region

Data for Pixel Being Evaluated
(Stored in the Register Marked
( with an X in Fig. 5)

Compare +1 or -1

If data from the pixel in the region is
within +1 or -1 of the pixel being
evaluated then pass it to the adder
tree. Otherwise, send a copy of the
pixel being evaluated to the adder
tree.

To Adder
Tree

Fig. 6. A simplified representation of the logic circuitry that exists
in each of the logic blocks in Fig. 5.

line buffers would have been required, almost doubling the
cost of the HP Color Recovery logic.

Filter Function Logic. As explained earlier, the HP Color Re-
covery filter function averages the data within a region by
summing the data for the pixels that pass an edge compare
operation. The sum is then divided by the number of pixels
that pass the edge compare. Typically, building the logic for
a filter function like this is difficult and costly because it re-
quires a divide circuit running at the video clock rate of 135
MHz. The HP Color Recovery filter function is implemented
so that this is not a problem.

The implementation details of the filter function are complex.
However, if we ignore the high-speed pipeline issues and
some minor adjustments required to optimize image quality,
we can reduce the implementation of the filter function to
the following equation:

k-1 -
Z(Frame_Buffer_Datai)(Wi) + (Evaluated_Pixel)(W,) (1)
i=0

where k is the number of pixels in the filter and Wi is a flag
equal to one when a pixel passes an edge compare operation
and zero when it doesn’t. This flag can be thought of as the
output of the comparator shown in Fig. 6.

The idea behind this equation is that if a pixel passes the
edge compare, include it in the total. On the other hand, if a
pixel fails the edge compare, then substitute the data for the
pixel being evaluated for the failing pixel. The overriding
assumption is that the pixel being evaluated is a reasonably
good guess of the true color data. The worst case is that all
the pixels around the sample fail the edge compare and the
dithered color is used for that location. Since dithering uses
a reasonable sample at each location this extreme case re-
sults in a reasonable image being displayed.

To see how this works let’s look at two examples. In the first
example assume that the pixel being evaluated is a single
red dot specified using 01011000 binary (2.75 in our decimal
numbering system). This is the same color used in some of
the examples described earlier. However, this time let us
assume that it is dithered to a value of 011. Also assume that
this pixel is surrounded by green. Since the edge compare is
done on a per-color basis, all the pixels in the region except
the pixel being evaluated will fail the edge compare. In this
case we will add a red value of 011 thirty-two times. The
result out of the adder tree in Fig. 5 will have a red value of
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01100000 (3.00 in decimal). Although this is not exact it will
appear as a red dot in the middle of a green region. In other
words, a reasonable approximation.

In the second example assume a region that is filled with
red is specified with the same eight-bit binary value of
01011000. Also assume the simple dither method described
earlier is used. In this case 3/4 of the pixels will be stored as
011. The other 1/4 will be stored as 010. Since none of the
pixels fails the edge compare we will send twenty-four pix-
els with the value of 011 and eight with the value 010 to the
adder tree. The results of the adder will be a binary value of
01011000 (2.75 decimal). In this case the output of HP Color
Recovery will match the input true color data exactly.

Hardware details. The filtering logic, which was shown in a
systems context in Fig. 3, is expanded in Fig. 5. As the frame
buffer is scanned, each pixel in the display is sequentially
sent to the logic shown in Fig. 5. The left side of the figure
shows the path taken as the data for each pixel read from
the frame buffer enters the filtering logic. The data is sent
both to a pipeline register for immediate use, and to a scan
line buffer for use when the next scan line is being evalu-
ated. The 32 registers shown in Fig. 5 store the data for the 2
x 16 region being evaluated. These registers are clocked at
the pixel clock rate. Note that the data for each pixel on the
display will pass through the location marked with the X.
When a pixel is at the location X, it is called the pixel being
evaluated. This means that the results of applying equation
1 are assigned to the display at the screen address of X.

The 32 pixels stored in the pipeline registers shown in Fig. 5
are sent through blocks of logic that perform the inner loop
evaluation of equation 1. This inner loop is essentially an
edge detector. The logic shown in Fig. 6 allows only pixels
that have similar numeric values to the pixel being evaluated
to be included in the summation. The summation logic is
simply an adder tree that sums the results of the pixels pass-
ing the edge compare. The filter function is performed in
parallel for all the pixels within the filter region.

Given the complexity of the function being performed in the
filter circuit, the circuit is surprisingly small. The entire filter
circuit is made up of approximately 35,000 transistors. Com-
pared to the number of transistors required to increase the
number of color planes, this is very small. For example in-
creasing the number of color planes from 8 to 16 on a typi-
cal SVGA (Super VGA) system (1024 x 768-pixel resolution)
requires over 8,000,000 transistors, which is 1M bytes of
additional frame buffer memory. Because of the small size of
the HP Color Recovery circuit, it is inexpensive enough to
be included in entry-level graphics systems.

Questions and Answers

Thus far the concepts behind HP Color Recovery have been
discussed. It has been shown that HP Color Recovery can
supply additional color capabilities to low-end graphics sys-
tems while maintaining an interactive windowed environ-
ment. The following are answers to the most frequently asked
questions about the practical use of HP Color Recovery.

Question: Is there a difference between a 24-bit true color
image and one displayed using HP Color Recovery?
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Answer: Yes. If you view a 24-bit image and an HP Color
Recovery image side by side there are differences. For exam-
ple, the back edge of the wing in Fig. 1c has some artifacts in
it. At normal size the artifacts can be found but are less no-
ticeable than in Fig. 1c.

Question: How many colors are reproducible with HP Color
Recovery?

Answer: In the best case HP Color Recovery can provide up
to 23 bits of accuracy. However, in typical images about four
million colors can be reproduced.

Question: Are artifacts introduced by HP Color Recovery?

Answer: In areas of very low contrast, artifacts will show up.
Again the back edge of the wing in Fig. 1c is a good exam-
ple.

Question: Does HP Color Recovery look the same on all HP
products that support it?

Answer: No. The first implementation was designed for the
graphics chip used in the HP 9000 Model 712 workstation.
After that design was finished some improvements were
made which ended up in the HCRX family of graphics de-
vices. These changes are hidden deep in the details of the
implementation, enabling any application using HP Color
Recovery on one product to work without change on the
other products.

Question: Do applications need to change to use HP Color
Recovery?

Answer: If the application was written using a 3D applica-
tion program interface the answer is no. Of course it must
be running in an eight-bit visual environment on a device
that supports HP Color Recovery. In addition, the application
must have been written to use the 24-bit true color model.
However, if the application was written using Xlib then it
must be changed to do the dithering. Details can be found
in reference 1.

Question: Is there a way to turn HP Color Recovery off?

Answer: Yes. Set the environment variable HP_DISABLE_
COLOR_RECOVERY to any value.

Question: What happens to the color map in the HP 9000
Model 712’s graphics chip when HP Color Recovery is en-
abled?

Answer: In the graphics chip there are two hardware color
maps. By default, the X11 server permanently downloads the
default color map into one of these hardware color maps. If
HP Color Recovery is enabled the remaining color map is
used by HP Color Recovery. See the article on page 43 for
more information about these color maps.

Question: What happens to the color map on HCRX graph-
ics when HP Color Recovery is enabled?

Answer: On HCRX graphics devices there are two hardware

color maps in the overlay planes and two in the image planes.

By default, the X11 server permanently downloads the default

color map into one of the overlay planes’ hardware color

maps. This is true in each of the following configurations:

O The HCRX-8 and HCRX-8Z frame buffer configurations with
no transparency have one hardware color map in the overlay
planes and two in the image planes that are available. In this
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configuration the HP Color Recovery color map can be
downloaded into any of the available hardware color maps.

O The HCRX-8 and HCRX-8Z frame buffer configurations
with transparency have only one hardware color map in
the overlay planes and only one in the image planes.
Since the hardware color map for the overlay planes al-
ready has the default color map loaded into it, there is
only one color map available for HP Color Recovery to
choose from. Therefore, in this configuration the HP Color
Recovery color map is downloaded into the remaining
hardware color map.

O The HCRX-24 and HCRX-24Z frame buffer configurations
with or without transparency have one hardware color
map in the overlay planes and two in the image planes
that are available. In this configuration, when using an
eight-bit visual depth the HP Color Recovery color map
can be downloaded into any of the available hardware
color maps.

* Question: Does HP Color Recovery work with logical raster

operations?

Answer: Yes. Like any dithered frame buffer system, HP
Color Recovery works with raster operations such as AND,
OR, and XOR.

* Question: How do image processing applications interact

with HP Color Recovery?

Answer: There are two basic classes of image processing

applications: feature finding and image enhancement.

O Feature finding. Most feature-finding applications are
based on edge detection. The results of running one of
these types of applications can be displayed using HP
Color Recovery. However, as with other dithered frame
buffers, any application using the frame buffer as the
image source may have problems if it does not account for
the dither.

O Image enhancement. Image enhancement applications are
typically used to enhance images for the human visual sys-
tem. The goal of many of these applications is to bring out
low-level features of the image. It is possible to preprocess
the image and send it to HP Color Recovery. However, if
there is a need for an extremely high-quality image (e.g.,
medical imaging) a 24-bit frame buffer may be necessary.

Question: If an image is dithered using a dither method
other than the one developed for HP Color Recovery, can it
be displayed on a system that supports HP Color Recovery?

Answer: Yes. One option is to turn HP Color Recovery off.
However, the image can be processed with HP Color Recov-
ery on. In this case the image will be viewable. The image
quality will be comparable to viewing the image on a typical
dithered system, but the dithering artifacts will be replaced
with a new set of artifacts.

Question: Can an image created using the HP Color Recovery
dither method be viewed on an eight-bit system that does
not support HP Color Recovery?

Answer: Yes. However, it is important to realize that without
the HP Color Recovery back end the dithering artifacts will
be visible in the image.

* Question: Can a user read the frame buffer data?

[ Hewlett-Packard Company 1995



Answer: Yes. However, as with any dithered system there is

the issue of precision. For example, if the red data is gener-

ated with eight bits of precision, then the readback will give
a three-bit dithered value for the data. The data on readback
is not the same as the eight-bit value generated by the appli-
cation.

Question: Does HP Color Recovery work with multimedia
applications?

Answer: Yes. By removing the dithering artifacts, image qual-
ity during MPEG (video) playback is improved.

Question: Does HP Color Recovery impact application per-
formance?

Answer: No. The HP Color Recovery dither is implemented
in fast hardware in both the Model 712’s graphics chip and
the HCRX graphics subsystem. When hardware dithering
cannot be used, such as with virtual memory double buffer-
ing, a software dither is performed by the device driver. Since
the dither is the same complexity as common dithers, there
is no performance penalty for using HP Color Recovery
when compared to using other dithered systems.

In addition, the DSP circuit in the back end is placed in the
path of the data being scanned into the monitor. As such the
DSP does get in the path (without affecting application per-
formance) when the system is performing what the user sees
as interactive tasks.

Question: Can an image generated using HP Color Recovery
be displayed on output devices other than monitors (e.g.,
printers)?
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Answer: Many applications generate a print file. In this case
the data displayed on the monitor is not used to create the
print file. Therefore, HP Color Recovery will not interfere
with the output. Another method used to generate hardcopy
is a screen dump. Unfortunately, a complete solution for
dumping a color-recovered image to a printer is not avail-
able yet.

Conclusion

Color recovery brings added color capabilities to entry-level
systems. Since the technology is based on dither, these addi-
tional color capabilities can be brought to an entry-level sys-
tem while maintaining an interactive environment that sup-
ports many current applications.
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Real-Time Software MPEG Video
Decoder on Multimedia-Enhanced PA

7100LC Processors

With a combination of software and hardware optimizations, including the
availability of PA-RISC multimedia instructions, a software video player
running on a low-end workstation is able to play MPEG compressed video

at 30 frames/s.

by Ruby B. Lee, John P. Beck, Joel Lamb, and Kenneth E. Severson

Traditionally, computers have improved productivity by
helping people compute faster and more accurately. Today,
computers can further improve productivity by helping
people communicate better and more naturally. Towards this
end, at Hewlett-Packard we have looked for more natural
ways to integrate communication power into our desktop
machines, which would allow a user to access distributed
information more easily and communicate with other users
more readily.

We felt that adding audio, images, and video information
would enrich the information media of text and graphics
normally available on desktop computers such as work-
stations and personal computers. However, for such en-
riched multimedia communications to be useful, it must be
fully integrated into the user’s normal working environment.
Hence, as the technology matured we decided to integrate
increasing levels of multimedia support into both the user
interface and the basic hardware platform.

In terms of user interface, we integrated a panel of multi-
media icons into the HP VUE standard graphical user inter-
face, which comes with all HP workstations. These multi-
media icons are part of the HP MPower product.! HP
MPower enables a workstation user to receive and send
faxes, share printers, access and manipulate images, hear and
send voice and CD-quality stereo audio, send and receive
multimedia email, share an X window or an electronic white-
board with other distributed users, and capture and play back
video sequences. The HP MPower software is based on a
client/server model, in which one server can service around
20 clients, which can be workstations or X terminals.

In terms of hardware platforms, we integrated successive
levels of multimedia support into the baseline PA-RISC work-
stations.23:4 First, we integrated support for all the popular
image formats such as JPEG (Joint Photographic Experts
Group)t compressed images.> Then, we added hardware
and software support for audio, starting with 8-kHz voice-
quality audio, followed by support for numerous audio for-
mats including A-law, pu-law, and 16-bit linear mode, with up
to 48-kHz mono and stereo. This allowed high-fidelity,
44.1-kHz stereo, 16-bit CD-quality audio to be recorded,

t JPEG is an international digital image compression standard for continuous-tone (multilevel)
stillimages (grayscale and color).
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manipulated, and played back on HP workstations. At the
same time, we supported uncompressed video capture and
playback.

In January 1994, HP introduced HP MPower 2.0 and the
entry-level enterprise workstation, the HP 9000 Model 712,
which is based on the multimedia-enhanced PA-RISC proces-
sor known as the PA 7100LC.%7:8 The video player integrated
in the MPower 2.0 product is the first product that achieves
real-time MPEG-1 (Moving Picture Experts Group)? video
decompression via software running on a general-purpose
processor. Typically real-time MPEG-1 decompression is
achieved via special-purpose chips or boards. Previous at-
tempts at software MPEG-1 decompression did not attain
real-time rates.10 The fact that this is achieved by the low-
end Model 712 workstation is significant.

In this paper, we discuss the support of MPEG-compressed
video as a new (video) data type. In particular, we discuss
the technology that enables the video player integrated into
the HP MPower 2.0 product to play back MPEG-compressed
video at real-time rates of up to 30 frames per second.

Digital Video Standards

We decided to focus on the MPEG digital video format be-
cause it is an ISO (International Standards Organization)
standard, and it gives the highest video fidelity at a given
compression ratio of any of the formats that we evaluated.
MPEG also has broad support from the consumer electronics,
telecommunications, cable, and computer industries. The
high compression capability of MPEG translates into lower
storage costs and less bandwidth needed for transmitting
video on the network. These characteristics make MPEG an
ideal format for addressing the need for detail in the video
used in technical workstation markets and computer-based
training in commercial workstation markets.

MPEG is one of several algorithmically related standards
shown in Fig. 1. All of these digital video compression stan-
dards use the discrete cosine transform (DCT) as a funda-
mental component of the algorithm. Alternatives to discrete
cosine-based algorithms that we looked at include vector
quantization, fractals, and wavelets. Vector quantization
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Fig. 1. Digital video standards based on the discrete cosine trans-
form.

algorithms are popular on older computer architectures be-
cause they require less computing power to decompress, but
this advantage is offset by poorer image quality at low band-
width (high compression) compared to MPEG for practical
vector quantization methods. Algorithms based on wavelet
and fractal technology have the potential to deliver video
fidelity comparable to MPEG, but there is presently a lack of
industry consensus on standardization, a key requirement for
our use.

Another advantage of a high-performance implementation of
MPEG is the ability to leverage the improvements to the
other DCT-based algorithms. Although the relationships
shown in Fig. 1 do not represent a true hierarchy of algo-
rithms is useful for illustrating increased complexity as one
moves from JPEG to MPEG-2, or from H.261 to MPEG-2.

All of these formats have much in common, such as the use
of the DCT for encoding. The visual fidelity of the algorithms
was the key selection criterion and not ease of implementa-
tion or performance on existing hardware.

Although JPEG supports both lossy and lossless compres-
sion, the term JPEG is typically associated with the lossy
specification.t The primary goal of JPEG is to achieve high
compression of photographic images with little perceived
loss of image fidelity. Although it is not an ISO standard, by
convention, a sequence of JPEG lossy images to create a
digital video sequence is called motion JPEG, or MJPEG.

H.261 is a digital video standard from the telecommunica-
tions standards body ITU-TSS (formerly known as CCITT).
H.261 is one of a suite of conferencing standards that make
up the umbrella H.320 specification. H.261 is often referred
to as P*64 (where P is an integer) because it was designed to
fit into multiples of 64 kbits/s bandwidth. The first frame

T Inlossless compression, decompressed data is identical to the original image data. In lossy
compression, decompressed data is a good approximation of the original image data.

(image) of an H.261 sequence is for all practical purposes a
highly compressed lossy JPEG image. Subsequent frames are
built from image fragments (blocks) that are either JPEG-like
or are differences from the image fragments in previous
frames. Most video sequences have high frame-to-frame co-
herence. This is especially true for video conferencing. Be-
cause the encoding of the movement of a piece of an image
requires less data than an equivalent JPEG fragment, H.261
achieves higher visual fidelity for a given bandwidth than
does motion JPEG. Since the encoding of the differences is
always based on the previous frames, the technique is called
Sforward differencing.

The MPEG-1 specification goes even further than H.261 in
allowing sophisticated techniques to achieve high fidelity
with fewer bits. In addition to forward differencing, MPEG-1
allows backward differencing (which relies on information in
a future frame) and averaging of image fragments. (Forward
and backward differencing are described in more detail in
the next section.) MPEG-1 achieves quality comparable to a
professionally reproduced VHS videotape even at a single-
speed CD-ROM data rate (1.5 Mbits/s).?11 MPEG-1 also
specifies encodings for high—fidelity audio synchronized with
the video.

MPEG-2 contains additional specifications and is a superset
of MPEG-1. The new features in MPEG-2 are targeted at
broadcast television requirements, such as support for frame
interleaving similar to analog broadcast techniques. With
widespread deployment of MPEG-2, the digital revolution for
video may be comparable to the digital audio revolution of
the last decade.

The approximate bandwidths required to achieve a level of
subjective visual fidelity for motion JPEG, H.261, MPEG-1,
and MPEG-2 are shown in Fig. 2. Motion JPEG will primarily
be used for cases in which accurate frame editing is impor-
tant such as video editing. H.261 will be used primarily for
video conferencing, but it also has potential for use in video
mail. MPEG-1 and MPEG-2 will be used for publishing,
where fidelity expectations have been set by consumer ana-
log video tapes, computer-based training, games, movies on
CD, and video on demand.

MPEG Compression

MPEG has two classes of frames: intracoded and non-
intracoded frames (see Fig. 3). Intracoded frames, also called
I-frames, are compressed by reducing spatial redundancy
within the frame itself. I-frames do not depend on compari-
sons with past or “reference” frames. They use JPEG-type
compression for still images.>

Fig. 2. Compressed video band-
width versus subjective visual
fidelity. The ideal format achieves
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exceptional visual fidelity at the
lowest bandwidth.
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Nonintracoded frames are further divided into P-frames and
B-frames. P-frames are predicted frames based on compari-
sons with an earlier reference frame (an intracoded or pre-
dicted frame). By considering temporal redundancy in addi-
tion to spatial redundancy, P-frames can be encoded with
fewer bits. B-frames are bidirectionally predicted frames that
require one backward reference frame and one forward ref-
erence frame for prediction. A reference frame can be an
I-frame or a P-frame, but not a B-frame. By detecting the
motion of blocks from both a frame that occurred earlier and
a frame that will be played back later in the video
sequence, B-frames can be encoded in fewer bits than I- or
P-frames.

Each frame is divided into macroblocks of 16 by 16 pixels
for the purposes of motion estimationt in MPEG compression
and motion compensation in MPEG decompression. A frame
with only I-blocks is an I-frame, whereas a P-frame has P-
blocks or I-blocks, and a B-frame has B-blocks, P-blocks, or
I-blocks. For each P-block in the current frame, the block in
the reference frame that matches it best is identified by a
motion vector. Then the differences between the pixel values
in the matching block in the reference frame and the current
block in the current frame are encoded by a discrete cosine
transform.

The color space used is the YCbCr color representation
rather than the RGB color space, where Y represents the
luminance (or brightness) component, and Cb and Cr repre-
sent the chrominance (or color) components. Because
human perception is more sensitive to luminance than to
chrominance, the Cb and Cr components can be subsampled
in both the x and y dimensions. This means that there is one
Cb value and one Cr value for every four Y values. Hence, a
16-by-16 macroblock contains four 8-by-8 blocks of Y, and
only one 8-by-8 block of Cb and one 8-by-8 block of Cr
values (see Fig. 4). This is a reduction from the twelve
8-by-8 blocks (four for each of the three color components)

t Motion estimation uses temporal redundancy to estimate the movement of a block from one
frame to the next.
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Fig. 3. MPEG frame sequencing.

if Cb and Cr were not subsampled. The six 8-by-8 blocks in
each 16-by-16 macroblock then undergo transform coding.

Transform coding concentrates energy in the lower fre-
quencies. The transformed data values are then quantized by
dividing by the corresponding quantization coefficient. This
results in discarding some of the high-frequency values, or
lower-frequency but low-energy values, since these become
zeros. Both transform coding and quantization enable further
compression by run-length encoding of zero values.

Finally, the nonzero coefficients of an 8-by-8 block used in
the discrete cosine transform can be encoded via variable-
length entropy encoding such as Huffman coding. Entropy
encoding basically removes coding redundancy by assigning
the code words with the fewest number of bits to those co-
efficients that occur most frequently.

XX XX XX XX‘XX XX XX XX
XX XX XX XX‘XX XX XX XX
XX XX XX XX‘XX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XOX\XOX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX XX XX XX XX
XX XX XX XOX\XOX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX[XX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX‘XX XX XX XX
XOX XOX XOX XOX‘XOX XOX XOX XOX
XX XX XX XOX‘XOX XX XX XX
XX XX XX XX‘XX XX XX XX
X = Luminance (Y)

0 = Chrominance (Cb, Cr)

Fig. 4. Subsampling of the chrominance components (Cb, Cr) with
respect to the luminance (Y) component.
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MPEG Decompression

MPEG decompression reverses the functional steps taken for
MPEG compression. There are six basic steps involved in
MPEG decompression.

1. The MPEG header is decoded. This gives information such
as picture rate, bit rate, and image size.

2. The video data stream is Huffman or entropy decoded
from variable-length codes into fixed-length numbers. This
step includes run-length decoding of zeros.

3. Inverse quantization is performed on the numbers to
restore them to their original range.

4. An inverse discrete cosine transform is performed on the
8-by-8 blocks in each frame. This converts from the frequency
domain back to the original spatial domain. This gives the
actual pixel values for I-blocks, but only the differences for
each pixel for P-blocks and B-blocks.

5. Motion compensation is performed for P-blocks and B-
blocks. The differences calculated in step 4 are added to the
pixels in the reference block as determined by the motion
vector for P-blocks and to the average of the forward and
backward reference blocks for B-blocks.

6. The picture is displayed by doing a color conversion from
YCbCr coordinates to RGB color coordinates and writing to
the frame buffer.

Methodology

Our philosophy was to improve the algorithms and tune the
software first, resorting to hardware support only if neces-
sary. We set a goal of 10 to 15 frames/s for software MPEG
video decompression because this is the rate at which mo-
tion appears smooth rather than jerky.

We started by measuring the performance of the MPEG soft-
ware we had purchased. This software initially took two
seconds to decode one frame (0.5 frame/s) on an older
50-MHz Model 720 workstation. This decoding was for video
only and did not include audio. Profiling indicated that the
inverse discrete cosine transform (step 4) took the largest
chunk of the execution time, followed by display (step 6),
followed by motion compensation (step 5). The decoding of
the MPEG headers was insignificant.

With this data we set out to optimize every step in the
MPEG decompression software. After we applied all the al-
gorithm enhancements and software tuning, we measured
the MPEG decode software again. While we had achieved an
order of magnitude improvement, the rate of 4 to 5 frames/s
was not sufficient to meet our goal.

Hence, we looked at possible multimedia enhancements to
the basic PA-RISC processor and other system-level enhance-
ments that would not only speed up MPEG decoding, but
also be generally useful for improving performance in other
computations. In addition, any chip enhancements we added
could not adversely impact the design schedule, complexity,
cycle time, and chip size of the PA-RISC processor we were
targeting, the PA 7100LC, which was already deep into its
implementation phase at the time. The PA 7100LC is de-
scribed in detail in the article on pagel2.

We approached this problem by studying the distribution of
operations executed by the software MPEG decoder. Then,
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we found ways to reduce the execution time of the most
frequent operation sequences. The application of algorithm
enhancements, software tuning, and projected hardware
enhancements was iterated until we attained our goal of
being able to decompress at a rate greater than 15 frames/s
via software.

Algorithm and Software Optimizations

In terms of MPEG video algorithms, we improved on the
Huffman decoder, the motion compensation, and the inverse
discrete cosine transform. A faster Huffman decoder based
on a hybrid of table lookup and tree-based decoding is
used. The lookup table sizes were chosen to reduce cache
misses. For motion compensation, we sped up the pixel
averaging operations.

For the inverse discrete cosine transform, we use a faster
Fourier transform, which significantly reduces the number of
multiplies for each two-dimensional 8-by-8 inverse discrete
cosine transform. In addition, we use the fact that the 8-by-8
inverse transform matrices are frequently sparse to further
reduce the multiplies and other operations required.

The MPEG audio decompression is also done in software.
This algorithm was improved by using a 32-point discrete
cosine transform to speed up the subband filtering.12

In terms of software tuning, we “flattened” the code to re-
duce the number of procedure calls and returns, and the
frequent building up and tearing down of contexts present
in the original MPEG code. We also did “strength reductions’
like reducing multiplications to simpler operations such as
shift and add or table lookup.

’

The last column of Table I shows the percentage of execu-
tion time spent in each of the six MPEG decompression steps
after the algorithm and software tuning improvements were
made. The first two columns of Table I show the millions of
instructions executed in each of the six decompression steps
and the percent of the total instructions executed (path
length) each step represents. The input video sequence was
an MPEG-compressed clip of a football game. The total time
taken was 7.45 seconds on an HP 9000 Model 735 99-MHz
PA-RISC workstation, with 256K bytes of instruction cache
and 256K bytes of data cache.

Table |
Instructions and Time Spent in each MPEG Decompression Step
on an HP 9000 Model 735

Millions of ~ Path Length  Time (%)
Instructions (%)
Header decode 0.6 0.1 0.1
Huffman decode 55.3 10.2 7.5
Inverse quantization 8.7 1.6 2.4
Inverse discrete 206.5 38.3 38.7
cosine transform
Motion 79.9 14.8 18.3
compensation
Display 188.7 35.0 33.0
Total 539.7 100.0 100.0
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The largest slice of execution time (38.7%) and the largest
chunk of instructions executed (38.3%) were still the inverse
discrete cosine transform. We studied the frequencies of ge-
neric operations in this group and attempted to execute
them faster. This resulted in new PA-RISC processor instruc-
tions for accelerating multimedia software.

PA-RISC Processor Enhancements

The new processor multimedia instructions implemented in
the PA 7100LC processor allow simple arithmetic operations
to be executed in parallel on subword data in the standard
integer data path. In particular, the integer ALU is partitioned
so that it can execute a pair of arithmetic operations in a
single cycle with a single instruction. The arithmetic opera-
tions accelerated in this way are add, subtract, average, shift
left and add, and shift right and add. The latter two opera-
tions are effective in implementing multiplication by con-
stants.

PA-RISC Multimedia Extensions 1.0. The PA 7100LC PA-RISC
processor chip contains some instructions that operate inde-
pendently and in parallel on two 16-bit data fields within a
32-bit register. These operations are independent in that bits
carried or shifted out of one of the fields never affects the
result in the other field. These operations occur in parallel in
that a single instruction computes both 16-bit fields of the
result. Table II summarizes these instructions.

HADD does two parallel 16-bit additions on the left and the
right halves of registers ra and rb, placing the two 16-bit re-
sults into the left and right halves of register rt.

HSUB does two parallel 16-bit subtractions on the left and
right halves of registers ra and rb, placing the two 16-bit re-
sults into the left and right half of register rt.

Both HADD and HSUB perform modulo arithmetic (modulus
216) that is, the result wraps around from the largest number
back to the smallest number and vice versa. This is the usual
mode of operation of twos complement adders when over-
flow is ignored.

HADD and HSUB also have two saturation arithmetic options.
With the signed saturation option, HADD.ss, both operands
and the result are considered signed 16-bit integers. If the
result cannot be represented as a signed 16-bit integer, it is
clipped to the largest positive value (215-1) if positive over-
flow occurs, or it is clipped to the smallest negative value
(-215) if negative overflow occurs.

With the unsigned saturation option, HADD.us, the first operand
(ra) is considered an unsigned 16-bit integer, the second
operand (rb) is considered a signed 16-bit integer, and the
result (in rt) is considered an unsigned 16-bit integer. If the
result cannot be represented as an unsigned 16-bit integer, it
is clipped to the largest unsigned value (210-1) if positive
overflow occurs, or it is clipped to the smallest unsigned
value (0) if negative overflow occurs.

The signed saturation and unsigned saturation options for
parallel halfword subtraction are defined similarly.

HAVE, or halfword average, gives the average of each pair of
halfwords in ra and rb. It takes the sum of parallel halfwords
and does a right shift of one bit before storing each 16-bit
result into rt. During the one-bit right shift, the carry is
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Table Il
PA-RISC Multimedia Instructions in PA 7100LC
ra contains al; a2
rb contains b1; b2
rt contains t1; t2

Instruction Parallel Operation
HADD ra,rb,rt t1 = (al+h1) mod216;
t2 = (a2+h2) mod21,
HADD.ss ra,rb,rt t1 =IF (al+b1) > (215-1) THEN (215-1)
ELSEIF (al+b1) < 215 THEN (-215)
ELSE (altbl);
t2 =IF (a2+b2) > (215-1) THEN (215-1)
ELSEIF (a2+b2) < —215 THEN (-215)
ELSE (a2+h2);
HADD.us ra,rb,rt t1 =IF (al+b1) > (216-1) THEN (216-1)
ELSEIF (al+b1) < 0 THEN O
ELSE (al+b1);
12 =IF (a2+b2) > (216-1) THEN (216-1)
ELSEIF (a2+h2) < 0 THEN 0
ELSE (a2+h2);
HSUB ra,rb,it t1 = (al-b1) mod216;
12 = (a2-b2) mod216;
HSUB.ss ra,rb, 1t t1 =IF (al-b1) > (215-1) THEN (215-1)
ELSEIF (a1-b1) < —215 THEN (-219)
ELSE (al-b1);
t2 =IF (a2-b2) > (215-1) THEN (215-1)
ELSEIF (a2-h2) < —215 THEN (-215)
ELSE (a2-b2);
HSUB.us ra,rb,rt t1=IF (al-b1) > (216-1) THEN (216-1)
ELSEIF (a1-b1) < 0 THEN 0
ELSE (al-b1);
t2 =IF (a2-b2) > (216-1) THEN (216-1)
ELSEIF (a2-b2) < 0 THEN 0
ELSE (a2-b2);
HAVE ra,rb,rt tl = (al+h1)/2;
t2 = (a2+h2)/2;
HSLKADD ra,k,rb,rt t1 = (al<k) + b1;
t2 = (a2«k) + b2;
(fork=1,2,0r3)
HSRKADD ra,k,rb,rt t1=(al>>k) + b1,

12 = (a2>>k) + b2;
(fork=1,2,0r3)

ss = signed saturation option

us = unsigned saturation

shifted in on the left and unbiased rounding* is performed on
the least-significant bit on the right. Because the carry is
shifted in, no overflow can occur in the HAVE instruction.

HSLKADD, or halfword shift left and add, allows one operand
to be shifted left by k bits (where k is 1, 2, or 3) before
being added to the other operand.

HSRKADD, or halfword shift right and add, allows one oper-
and to be shifted right by k bits (where k is 1, 2, or 3), be-
fore being added to the other operand.

Both HSLKADD and HSRKADD use signed saturation.

* Unbiased rounding means that the net difference between the true averages and the averages
obtained after unbiased rounding is zero if the results are equally distributed in the result range.
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Saturation Arithmetic. In saturation arithmetic a result is said to
have a positive overflow if it is larger than the largest value
in the defined range of the result. It is said to have a nega-
tive overflow if it is smaller than the smallest value in the
defined range of the result. If the saturation option is used
for the HADD and HSUB instructions, the result is clipped to
the maximum value in its defined range if positive overflow
occurs and to the minimum value in its defined range if neg-
ative overflow occurs. This further speeds up the processing
because it replaces using about ten instructions to check for
positive and negative overflows and performs the desired
clipping of the result for a pair of operations in one instruc-
tion.

Saturation arithmetic is highly desirable in dealing with pixel
values, which often represent hues or color intensities. It is
undesirable to perform the normal modulo arithmetic in
which overflows wrap around from the largest value to the
smallest value and vice versa. For example, in 8-bit pixels, if
0 represents black and 255 represents white, a result of 256
should not change a white pixel into a black one, as would
occur with modulo arithmetic. In saturation arithmetic, a
result of 256 would be clipped to 255.

Effect on MPEG Decoding. These parallel subword arith-
metic operations significantly speed up several critical parts
of the MPEG decoder program, especially in the inverse dis-
crete cosine transform and motion compensation steps. More
than half of the instructions executed for the inverse trans-
form step are these parallel subword arithmetic instructions.
Their implementation does not impact the processor’s cycle
time, and adds less than 0.2% of silicon area to the PA
7100LC processor chip. Actually, the area used was mostly
empty space around the ALU, so that these multimedia en-
hancements can be said to have contributed to more effi-
cient area utilization, rather than adding incremental chip
area. See “Overview of the Implementation of the Multi-
media Enhancements” on page 66.

Since the PA 7100LC processor has two integer ALUs, we
essentially have a parallelism of four halfword operations
per cycle. This gives a speedup of four times, in places
where the superscalar ALUs can be used in parallel. Because
of the built-in saturation arithmetic option, speedup of cer-
tain pieces of code is even greater.

System Optimization

The second longest functional step (see Table I) in MPEG
decompression was the display step. Here, we leveraged the
graphics subsystem to implement the color conversion step
together with the color recovery already being done in the
graphics chip.” Color conversion converts between color
representations in the YCbCr color space and the RGB color
space. Color recovery reproduces 24-bit RGB color that has
been color compressed into 8 bits before being displayed.
Color compression allows the use of 8-bit frame buffers in
low-cost workstations to achieve almost the color dynamics
of 24-bit frame buffers. This leveraging of low-level pixel
manipulations close to the frame buffer between the graph-
ics and video streams also contributed significantly to the
attainment of real-time MPEG decompression. Color recovery
and the graphics chip are described in the articles on pages
51 and 43, respectively.
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Other PA 7100LC processor enhancements streamline the
memory-to-I/O path. By having the memory controller and
the I/O interface controller integrated in the PA 7100LC chip,
overhead in the memory-to-frame-buffer bandwidth is re-
duced. Overhead in the processor-to-graphics-controller-chip
path is also reduced for both control and data.

Path Length Reduction

Table III shows the same information as Table I but for the
low-end Model 712 workstation which uses the multimedia-
enhanced PA 7100LC processor and the graphics chip
mentioned above.

Table IlI
Instructions and Time Spent in each MPEG Decompression Step
on a Model 712 Workstation

Millions of ~ Path Length  Time (%)
Instructions (%)
Header decode 0.60 0.2 0.3
Huffman decode 55.0 16.1 14.5
Inverse quantization 8.9 2.6 4.5
Inverse discrete 138.5 40.6 34.4
cosine transform
Motion 74.8 21.9 25.6
compensation
Display 63.0 18.5 20.7
Total 340.8 100.0 100.0

The Model 712 executes consistently fewer instructions than
the Model 735 for the same MPEG decompression of the
same video clip. It is also faster in MPEG decompression
even though it operates at only 60% of the 99-MHz rate of
the high-end Model 735 and has only one eighth of the
cache size. This shows the performance benefits from the
path length reduction enabled by the PA-RISC processor and
system enhancements for multimedia acceleration.

Performance

The performance of the PA-RISC architectural enhancements
and the leveraging of the graphics subsystem for video de-
compression can be seen in Fig. 5. This data is for a
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Fig. 5. Maximum MPEG decode frame rates for different models of

HP 9000 Series 700 workstations. These rates are for a 352-by-240-
pixel clip that was encoded at 30 frames/s.
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Overview of the Implementation of the PA 7100LC Multimedia Enhancements

One goal in adding the multimedia instructions was to minimize the amount of new
circuits to be added to the existing ALUs and to minimize the impact on the rest of
the CPU. This goal was accomplished. The only circuit changes to the CPU were
in the ALU data path and decoder circuits. These instructions reuse most of the
existing functionality and very small modifications and additions were required to
implement them.

All of the new instructions implemented require two 16-bit adds or subtracts to be
done in parallel. The existing ALU adder was modified to provide this functionality.
These instructions required that the existing 32-bit adder be conditionally split into
two 16-bit halves without sacrificing the performance of the 32-bit add. Conceptu-
ally this is equivalent to blocking the carry from bit 16 to bit 15 in a ripple-carry
adder. To accomplish this, we made the following modifications.

The ALU adder is similar to a carry lookahead adder. The first stage of the adder
calculates a carry generate and a carry propagate signal for each single bit in the
adder. In this case, 32 single-bit generate and 32 single-hit propagate signals are
calculated. These single-bit carry generate and carry propagate signals are used
in subsequent stages of the carry chain to calculate carry generate and carry
propagate signals for groups of bits.

The 32-bit adder was divided into two 16-bit halves between bits 15 and 16 by
providing alternate signals for the carry generate and carry propagate signals
from bit 16 (Fig. 1). The new generate and propagate signals from bit 16 are
created with a two-input multiplexer. When a 32-bit addition or subtraction is being
performed, the multiplexer selects the original generate and propagate signals
to be passed onto the next stage of the carry chain. When 16-bit addition or
subtraction is being performed the multiplexer selects the value for generate and
propagate from the second input which is false (logical 0) for additions and true
(logical 1) for subtractions.

The new generate and propagate signals can be forced to be false for instructions
requiring halfword addition. This stops the carry from being generated by bit 16 or

Carry Chain Outputs
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dddd dddddd
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16-Bit Carry-in
A[16] (0 for Add,

Old Gen[16]
B[16] Dl for Subtract)

Al16] :. Old Prop[16] A[16] 0Old Prop[16]
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Fig. 1. Modifications to the carry lookahead adder to accommodate the halfword instructions.
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Fig. 2. Saturation logic. There is one of the these circuits for each halfword.

propagating from bit 16 to bit 15, even if this generate and propagate signal is not
used directly to calculate the carry signal (as is the case in this adder). The gener-
ate and propagate signals can also be forced to be true for instructions requiring
halfword subtraction. This will force a carry into the more significant halfword of the
adder by generating a carry from bit 16 into bit 15. This technique is used along
with the ones complement of the operand to be subtracted to perform subtraction
as twos complement addition.

The original carry generate and propagate signals from bit 16 are still generated to
calculate overflows from the less significant halfword addition. This overflow is
used by the saturation logic, which can be invoked by some of these instructions.

Saturation requires groups of bits of the result to be forced to states of true or
false, or passed unchanged. This is accomplished with an AND-OR gate (Fig. 2).
The AND function can force the output of the gate to be false and the OR function
can force the output of the gate to be true. Thus, the output is either forced high,
forced low, or forced neither high nor low. It is never simultaneously forced high
and low. The key is to determine when to force the result to a saturated value.

The saturation circuit is added at the end of the ALU’s data path after the result
selection multiplexer selects one of the results from the adder after it performs
additions, subtractions, or logical operations such as bitwise AND, OR, or XOR
(Fig. 3). The saturation circuit does not impact the critical speed paths of the ALU
because it is downstream from the point where the cache data address is driven
from the adder and where the test condition logic (i.e., logic for conditional branch
instructions) obtains the results from which to calculate a test condition.

If signed saturation is selected, the ALU will force any 16-bit result that is larger
than Ox71ff to 0x7fff (215-1) and any 16-hit result that is smaller than 0x8000 to
0x8000 (—215). These conditions represent positive and negative overflow of
signed numbers. Positive and negative overflow can be detected by examining the
sign hit (the MSB) of each operand and the result of the add. If both operands are
positive and the result is negative then a positive overflow has occurred and the
result in this case is saturated by forcing the most-significant hit to a logical 0 and
the rest of the bits to a logical 1. If both operands are negative and the result is
positive then a negative overflow has occurred and the result in this case is satu-
rated by forcing the most significant bit to a logical 1 and the rest of the bits to a
logical 0. Unsigned saturation is implemented in a similar way.

The average instruction, HAVE, requires manipulating the result after the addition
is finished. Before the implementation of the halfword instructions the ALU se-
lected between the results of a bitwise AND, a bitwise OR, a bitwise XOR, or the
sum of the two input operands. The halfword average instruction adds an addi-
tional choice. The average result is the sum of the two input operands shifted right
one hit position with a carry out of the most-significant bit (MSB) becoming the
MSB of the result. To perform rounding of the result, the least-significant bit (LSB)
of the result is replaced by an OR of the two least-significant bits before shifting
right one bit.

The shift right and add and the shift left and add functions were added by modifying
the x-bus preshifter in the operand selection logic of the ALU. The original ALU was
capable of shifting 32-bit inputs left by zero, one, two, or three bits. To implement
the 16-hit shift left and add instructions, the left-shift circuits had to be broken at
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Fig. 3. Flow of halfword instructions showing the location of the saturation logic in
relation to the ALU.

the halfword boundary. This was done by ANDing the hits shifted from the least-
significant halfword to the most-significant halfword with a control signal that indi-
cates when a 32-bit shift is being done. The 16-bit shift right and add instructions
were implemented by adding the ability to shift one, two, or three bits right. This
shift is always broken at the halfword boundary.

One challenging aspect of implementing the 16-bit shift left and add instructions
was detecting when the results of shifting an operand left by one, two, or three bits
causes a positive or negative overflow. A positive overflow occurs when the un-
shifted operand is positive and a logical one is shifted out of the left, or when the
result of the shift is negative. A negative overflow occurs when the unshifted oper-
and is negative and a logical zero bit is shifted out of the left, or when the result of
the shift is positive. These overflow conditions are combined with the overflows
calculated by the adder and used to saturate the final result. The final result is
saturated if either the left shift or the adder causes an overflow.

The result of selecting instructions that can provide the most useful functionality
while costing the least to implement was a relatively small increase in the area of
the ALU. About 15% of the ALU's area is devoted to halfword instructions. Since
the ALU's circuits were the only ones modified on the processor chip, only about
0.2% of the total processor’s chip area is devoted to halfword instructions.

video clip that was compressed at 30 frames/s. The Model
715 and Model 735 are based on the PA 7100 processor. The
Model 712 is based on the PA 7100LC processor, which is a
derivative of the PA 7100. The PA 7100LC contains the multi-
media enhancements and system integration features and is
described in the article on page 12. The older, high-end
Model 735 running at 99 MHz achieves 18.7 frames/s while
the newer entry-level Model 712 achieves 26 frames/s at 60
MHz and 33.1 frames/s at 80 MHz. These frame decompres-
sion rates are quoted for MPEG video only (no audio) with

[J Hewlett-Packard Company 1995

Berkeley Software with-

Berkeley Software
out Hardware and Soft-

HP Decoder with

ware Enhancements Software and
HP Decoder Hardware
0T with Software 26, Enhancements
254 Enhancements, but :
" without Hardware En-
E 204+ hancements
: l
=BT 11v1
10.9 .
10 T >/
5 ~+
0 , ,

Model 720 50 MHz Model 712 60 MHz

. Berkeley D HP

Fig. 6. Comparison between the performance of the enhanced
Berkeley MPEG decoder and the HP MPEG decoder (without audio).

no constraints on how fast the decoding can proceed. In
other words, the decoding rate is not constrained by the rate
at which the MPEG stream has been compressed. Hence,
although the video clip used was MPEG compressed at 30
frames/s, the 80-MHz Model 712 can decode it faster than 30
frames/s in unconstrained mode. This implies that there is
some processor bandwidth left after achieving real-time soft-
ware MPEG video decoding.

In the video player product in HP MPower 2.0, frames are
skipped if the decoder cannot keep up with the desired real-
time rate. This results in a lower effective frame rate, since
skipped frames are not counted, even though execution time
may have been used for partial decoding of a skipped frame.

Fig. 6 shows a comparison between the enhanced Berkeley
software MPEG decoder and the HP software MPEG decoder
running on the older HP 9000 Model 720 (with no hardware
multimedia enhancements) and the newer Model 712 work-
station (with hardware multimedia enhancements). The
fourth column in Fig. 6 illustrates the performance obtain-
able with synergistic software and hardware enhancements.

In the Model 720, the Berkeley and HP software decoders
have comparable performance. For the Model 712, the per-
formance of the HP decoder was 2.4 times greater than the
Berkeley decoder because of the synergistic coupling of the
algorithms and software optimized with the PA-RISC multi-
media instructions and the system-level enhancements in the
Model 712.

Fig. 7 shows the performance when MPEG audio of various
fidelity levels is also decompressed by software running on
the general-purpose PA 7100LC processor. The highest-fidel-
ity audio is stereo with no decimation. This means that every
audio sample comes as a pair of left and right channel val-
ues, and every sample is used. Half decimation means that
one out of every two audio samples is used. (3/4 decimation
means that only one out of every four audio samples is
used.) Mono means that every audio sample is a single value
(channel) rather than a pair of values.

While software decompression of MPEG audio degrades the

performance in terms of frames decoded per second, the PA

7100LC-based workstations achieved rates of 15.1 frames/s at
60 MHz, 24.2 frames/s at 80 MHz, and 27.4 frames/s at
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100 MHz even with the highest-fidelity 44.1-kHz stereo
16-bit linear audio format with no decimation. With further
enhancements of audio decoding and audio-video synchro-
nization, we should be able to do even better.

Conclusion

We wanted a software approach to MPEG decoding because
we felt that if video is to be useful it has to be pervasive,
and to be pervasive, it should exist at the lowest incremental
cost on all platforms. With a software video decoder, there is
essentially no additional cost. In addition, the evolving stan-
dards and improving algorithms pointed to a flexible solu-
tion, like software running on a general-purpose processor.
Using special-purpose chips designed for MPEG decoding,
or even for JPEG, MPEG, and H.261 compression and de-
compression, would not allow one to take advantage of im-
proved algorithms and adapt to evolving standards without
buying and installing new hardware.

Furthermore, since the performance of general-purpose
microprocessors continues to improve with each new gen-
eration, we wanted to be able to leverage these improve-
ments for multimedia computations such as video decom-
pression. This approach also allows us to focus hardware
design efforts on improving the performance of the general-
purpose processor and system without having to replicate
performance efforts in each special-purpose subsystem, such
as the graphics and video subsystems. The PA-RISC multime-
dia instructions are also useful for graphics, image, and
audio computations, or any computations requiring arithme-
tic on a lot of numbers with precision less than 16 bits.

The net result is that we achieve real-time MPEG decoding
of video streams at 30 frames/s with a software decoder.
This was achieved by a synergistic combination of algorithm
enhancements, software tuning, PA-RISC processor multime-
dia enhancements, combining video and graphics support
for color conversions and color compression, and system
tuning. The PA-RISC multimedia enhancements allow parallel
processing of pixels in the standard integer data path at an
insignificant addition to the silicon area. The total area used
is less than 0.2% of the PA 7100LC processor chip with no
impact on the cycle time or the control complexity.

The real-time software MPEG decoding rate of the final
video player product exceeds our original goal of 10 to 15
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frames/s for a software-based MPEG video decoder. It is also
significant that MPEG video decoding at 30 frames/s is
achieved by an entry-level rather than a high-end work-
station. This is in the context of a full-function video player
on the HP MPower 2.0 product. With MPEG audio decoding
(also done by software), the frame rate is usually above 15
frames/s, even for the low-end Model 712/60 workstation,
and around 24 frames/s for the Model 712/80 workstation.

We expect to see continuous improvement in the MPEG
decoding rate as the performance of the general-purpose
processors increases. With PA-RISC processors, there has
been roughly a doubling of performance every 18 to 24
months. This would imply that larger frames sizes, multiple
video streams, or MPEG-2 streams may be decoded in the
future by such multimedia-enhanced general-purpose
processors.
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HP TeleShare: Integrating Telephone
Capabilities on a Computer

Workstation

Using off-the-shelf parts and a special interface ASIC, an /O card was
developed that provides voice, fax, and data transfer via a telephone line

for the HP 9000 Model 712 workstation.

by S. Paul Tucker

Integration of the telephone and the computer workstation is
a natural step in the evolution of the electronic office. It
allows the user to perform telephone transactions without
having to change from the keyboard and mouse environ-
ment to the telephone and handset environment and vice-
versa. This capability provides obvious benefits to a wide
customer audience, especially those dealing with customer
service and support. The HP TeleShare option card for the
HP 9000 Model 712 workstation represents HP’s first inte-
grated telephony product. Coupled with multimedia technol-
ogies such as audio, video, and HP SharedX,! HP TeleShare
provides the user with a powerful arsenal of communica-
tions tools. This article will focus mainly on the hardware
aspects of the HP TeleShare product.

Features provided by HP TeleShare include:

Two-line support, with each line configurable for voice, fax,
or data

Workstation audio support and mixing (stereo headset with
built-in microphone included)

Dual-tone multifrequency (DTMF) tone generation and
detection

Telephone line status and control

Call progress support

Caller-ID support

V.32bis modem (14,400 bits/s) with V.42bis and MNP5
(Microcom Networking Protocol) compression and error
correction

Fax Group 3 Class II up to 14,400 bits/s.

Background

HP TeleShare began as an experimental interface card for
the HP 9000 Series 300 workstations. It had simple voice-
only telephone capabilities, including single-source audio
record and playback, and it was perceived as useful (and
entertaining) to those engineers who were fortunate enough
to have the opportunity to use it. At some point, further in-
vestigation was needed and the HP TeleShare project team
was formed. It was determined that fax and data modem
capabilities were needed with close coupling to the work-
station’s audio capability. Dual telephone lines were included
so the user could talk on one line and at the same time use
the other line for faxing or data. The standard analog phone
line interface was chosen over digital (i.e., ISDN) because of
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the relatively insignificant number of digitally equipped PBX
systems.

The first incarnation of the current product was an external
RS-232-driven box with stereo inputs for computer, line-in,
and microphone audio, and stereo outputs for computer,
line-out, and headphones. It provided dual-line operation
and employed two DSP (digital signal processor) subsystems
for maximum flexibility and performance in voice and data
modes. Audio mixing was provided by dedicated analog
hardware, and any combination of audio inputs could be
sent to any output complete with treble and bass control.
The audio capabilities were so good that HP TeleShare engi-
neers always had their CD players plugged into the box and
their headphones on. This forced development of an auto-
matic audio mute feature when an incoming call was de-
tected. Since modem functionality was a primary goal, the
command interface for the box used a partial modem AT
command set, along with some proprietary extensions for
new functionality like setting audio gains, setting audio mix
values, telling a DSP to reboot, and so on. These commands
were delivered over the RS-232 interface and received the
typical OK and error responses.

While the external box was well received in the lab and by
customers, it was postponed indefinitely in favor of a lower-
cost internal version with a proprietary interface available on
a single workstation, the Model 712. The same DSP subsys-
tem used in the external box was carried over to the Model
712 option card and some effort was exerted to leverage as
much as possible of the external box’s software interface
and feature set into the new design.

Architecture

HP TeleShare is made up of two independent DSP subsys-
tems that communicate with the workstation host through an
interface chip called XBAR (see Fig. 1). Each DSP is coupled
to a hybrid chip called a data access arrangement, which
provides direct connection to a standard two-wire analog
telephone line. HP TeleShare is tightly coupled with the
workstation audio system to provide the highest degree of
audio flexibility. For instance, line-in audio (perhaps from a
CD player) could be sent to telephone line 0 while the party
on that line is on hold. Simultaneously, the workstation
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user could be conversing with or faxing a message to the
party on telephone line 1. During this time comments from
the party on line 0 could be recorded to disk for later
playback.

XBAR. The XBAR ASIC (application-specific integrated
circuit) is a custom VLSI part packaged in a low-cost 80-pin
QFP (quad flat pack). It was designed by the HP TeleShare
team specifically for use with the Model 712 workstation and
performs all of the interface functions required by the HP
TeleShare card. The XBAR chip communicates with

the system I/O chip (LASI) and the audio CODEC (coder/
decoder) through a pair of proprietary serial interfaces. If HP
TeleShare is not present in the system, audio data and
CODEC control words pass through the bidirectional buffer
between the system I/O chip and the audio CODEC. When
the HP TeleShare card is installed, XBAR is effectively placed
between the system I/O chip and the CODEC, forcing all
audio to be routed through XBAR in either direction. The
serial interface between XBAR and the audio CODEC carries
16-bit stereo audio data.

The serial interface between XBAR and the I/O chip multi-
plexes 16-bit system audio data (to and from disk) and con-
trol words for XBAR. In addition, this interface is used for
modem data, voice-mode AT commands and responses, and
DSP application code downloaded from the host system. On
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Share.

the DSP side, XBAR has two 13.824-MHz serial ports, each
designed specifically for interfacing with the DSPs. These
ports are used for passing audio samples, modem data, ap-
plication programs, and commands and responses to and
from the DSPs.

XBAR’s configuration can be changed by writing to the
control registers in the XBAR-to-LASI I/O serial interface
address space. In voice mode, XBAR is configured to pass
each audio data sample from the LASI I/O chip and CODEC
(coder/decoder) to a DSP, whereupon the DSP will return
responses to each of those sources. XBAR can also send
audio data samples from DSP to DSP for conferencing be-
tween lines when both lines are in voice mode. In data and
fax modes, XBAR sends appropriately formatted data to the
DSP and receives similar data in return.

Although XBAR supports stereo audio at up to a 48-kHz
sample rate, DSP bandwidth limitations require all audio
data to and from the telephone lines to be left-channel only,
sampled at 8 kHz. This is not a serious limitation, since tele-
phone-quality audio only requires a sample rate around 7.2
kHz for full reproduction and is inherently a single-channel
signal.

In addition to the DSP serial ports, XBAR also has a pair of
byte-wide parallel ports that connect to the DSPs’ boot ROM
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ports. This allows DSP boot code (not to be confused with
DSP application code) to be downloaded from the host sys-
tem. This provides additional flexibility and eliminates the
cost and board-space limitations associated with external
ROMs.

XBAR has several asynchronous control signals that are con-
nected to downstream hardware, including reset lines for the
DSP subsystems and hook control and telephone status
(such as the ring indicator) signals to and from the data ac-
cess arrangement chips.

The biggest challenge in XBAR’s design was purely logistical
because we had a lot of different data types (e.g., stereo data
and telephone command and status data) to handle and very
little time to implement them in XBAR. There are no less
than 52 separate data types that XBAR must recognize and
generate for the two DSP serial interfaces alone, with a
slightly smaller number required for the system I/O interface.
To provide these types, each transaction between XBAR and
a DSP consists of 16 bits, with the upper eight bits providing
type information and the lower eight bits providing the asso-
ciated data. To prevent data overruns, XBAR requires a data
acknowledge (Ack) word back from the appropriate DSP for
every transaction.

Audio data samples in HP TeleShare are 16 bits long. Since
XBAR sends eight bits of data at a time, audio samples must
be broken into two pieces: an upper half, or most-significant
byte (MSB) and a lower half, or least-significant byte (LSB).
Using this model, it requires two transfers from XBAR and
two Acks back to send one sample of audio data to a DSP.
Sending one set of stereo system and line-in audio samples
to a DSP requires eight output transfers (four transfers for
the system sample and four transfers for the line-in sample),
with an Ack back after each transfer. The DSP will then send
mixed audio samples back for the system and the CODEC,
requiring an additional eight transfers, for a total of 24 trans-
fers per sample. This has to happen at an 8-kHz sample rate
(once every 125 microseconds). Fortunately, XBAR can han-
dle these transactions, but order must be maintained exactly
or audio quality will suffer. Other data types, such as AT
commands and responses, are given lower priority during
audio frames and are queued until audio transfer is finished.

Digital Signal Processor. The DSP used by TeleShare is an Ana-
log Devices ADSP2101. This is a programmable single-chip
microcomputer optimized for digital signal processing, and
operates at 16.67 MHz. The 2101 operates on 16-bit data and
uses a 24-bit instruction word. It has 1024 words of data
RAM and 2048 words of program RAM on the chip. The part
has two data address generators and a program sequencer,
which allows program and data accesses to occur simulta-
neously in a single cycle. Dual data operand fetches can also
occur in a single cycle since program memory can also be
used to store data. The part can address up to 16K words
of data and 16K words of program memory, both of which
are supplied on the HP TeleShare board in the form of six
external SRAMs.

The DSP has two independent serial ports, SPORT0 and
SPORT1, which support multiple data formats and frame rates
and are fully programmable. In the HP TeleShare design,
SPORTL on each DSP is dedicated to communication with
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XBAR, while SPORT0 is dedicated to communication with an
AD28msp01 telephone line CODEC. Each full transfer to or
from one of the SPORT lines triggers an associated interrupt
in the 2101, allowing programs to act on the incoming data
as it arrives.

Analog Devices supplies a complete set of software develop-
ment tools for the 2100 microprocessor family, including a C
compiler with a DSP function library.

CODEC. The Analog Devices AD28msp01 provides HP Tele-
Share with a multiple-sample-rate CODEC specifically de-
signed for use in modem designs. This device supports sam-
ple rates of 7.2 kHz, 8.0 kHz, and 9.6 kHz, and has an 8/7
mode* for sampling at 8.23 kHz, 9.14 kHz and 10.97 kHz.
For voice mode operation, 7.2 kHz and 8.0 kHz are all that
is required, but the sophisticated algorithms used by modern
modem standards often require the other rates. The CODEC
uses 16-bit sigma-delta conversion technology and includes
resampling and interpolation filtering along with transmit
and receive phase adjustments.

Each CODEC has one serial port which is connected directly
to SPORT0 on the associated DSP. This port operates in free-
running mode once it is properly initialized and continually
sends 16-bit data samples from the telephone line to the
DSP. All transfers to the DSP consist of a serial output frame
sync followed by a 16-bit address word, then a second frame
sync followed by a 16-bit data word. These address and data
pairs are transmitted at the selected sample rate and trigger
SPORTO receive interrupts in the DSP. The DSP transfers data
to the CODEC using the same mechanism as just described
(in the other direction, of course). The address portion of
each transfer coming from the DSP identifies the data as a
control word (for programming the part) or as a data word
to be sent through the on-chip digital-to-analog converter
(DAC) and transmitted to the data access arrangement chip.
Data from the CODEC to the DSP is identified as either a
control word or as a data word from the on-chip analog-to-
digital converter (ADC).

The AD28msp01 CODEC is attached to the telephone line
through the data access arrangement chip. Transmit data
outputs are differential for noise reduction, while the receive
data input is single-ended.

Data Access Arrangement. HP TeleShare uses the TDK
73M9002 data access arrangement chip as its telephone line
interface. This part provides all the necessary line monitoring,
filtering, isolation, protection, and signal conversion functions
for connection of high-performance analog modem designs to
the PSTN (public switched telephone network) in the United
States, Canada, and Japan. The 73M9002 incorporates, on a
two-to-four-wire hybrid, ring detection circuitry, off-hook
relay, and on-hook line monitoring for caller-ID support (see
“Caller-ID” on page 72).

The 73M9002 comes with FCC (Federal Communications
Commission) part 68 DOC CS-03 and JATE (Japan Approvals
Institute for Telecommunications Equipment) protection cir-
cuitry built in, and is compliant with UL 1459 2nd Edition

* The 8/7 mode is a capability required by some modem applications. It simply adds some
sampling bandwidth. For example, in 8/7 mode the normal 8-kHz sample rate becomes
9.14 kHz (8 x 8/7).
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Caller-ID

Caller-ID information is sent between the first and second power ringing signals.
The data is sent a minimum of 500 milliseconds after the first ring and ends at
least 200 milliseconds before the second ring begins. This leaves 2.9 to 3.7 seconds
of time for data transmission. The data is sent at 1200 baud using frequency shift
keying (FSK) modulation. All data is 8-bit ASCII.

Two standard formats exist for Caller-ID information: single message format and
multiple message format. In general, both formats can be described using Fig. 1.

The message type is 0x4 (hexadecimal 4) for single message format. The mes-
sage length is variable and indicates the number of message words in the mes-
sage body. The final word is a checksum word, used for error checking. Single

message format provides the receiver with date, time, and calling number data.

The message type is 0x80 (hexadecimal 80) for multiple message format. The
message length is variable as before, but provides the receiver with date, time,
calling number, and calling name data if available. In the absence of calling name
data, a P indicating private or an O indicating out of area or unavailable will be sent.

Caller-ID detection requires on-hook line monitoring, which the HP TeleShare data
access arrangement chip fully supports. HP TeleShare can detect and display both
message formats.

Message Header Message Body

More
Message Message Message Message Shadau
Type Length Word Words

Bit 0 78

15 16 23

Time —>

0x4 Single Message Format
0x80 Multiple Message Format

Fig. 1. Caller-ID message format.

with the addition of an external slow-blow fuse. The off-
hook relay is controlled by a TTL-level input from XBAR.
This relay determines when the phone is off the hook and
can be pulsed for use as a pulse dialer. Another TTL-level
input from XBAR is used to enable on-hook line monitoring.

The ring detection circuitry is capable of detecting ringing
signals that comply with Ringing Type B from the FCC Part
68 regulations. The detected ring signal appears at a pair of
differential outputs which are also connected to XBAR.

The 73M9002 provides telephone connectivity to the DSP
subsystem through the CODEC’s analog receive and transmit
lines and is attached to the telephone line through a stan-
dard RJ-14 connector.

Operating Modes

HP TeleShare is capable of operating in three modes: voice,
fax, and data. The modes are selected through a graphical
user interface by the workstation user. The mode application
software is downloaded through XBAR to a DSP as needed
and runs continually until a reset of that DSP is performed.
The voice mode code was developed solely by HP and can
be run on one or both lines simultaneously. The fax and
data modem code was developed with a third party and
because of licensing restrictions, only one line can be config-
ured as a fax or data modem at a time. Combinations of
voice and fax or data are fully supported.
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Voice Mode Operation. When configured in the voice mode,
HP TeleShare essentially operates like an enhanced tele-
phone. Digital mixing of microphone, line-in, telephone, and
recorded audio (from system disk) is supported for both
playback and recording. This capability allows numerous
interesting audio configurations including placing a line on
hold with music, recording conversations, playing back re-
corded audio over the phone, and so on. While in voice
mode, HP TeleShare provides the user with caller-ID infor-
mation if it is available. In addition, DTMF (dual-tone multi-
frequency) tone and pulse dialing are supported, along with
DTMF tone detection for unattended phone functions like
answering machines or voicemail (see “Call Progress, DTMF
Tones, and Tone Detection” on page 73).

Dialing and hook manipulation actions are performed through
the GUI (graphical user interface), but at the lowest level
these actions are sent to the DSP as standard AT commands
like ATDT (attention dial tone) and ATH n (n = 0 is on-hook or
hang up, and n = 1 is take telephone off hook). Special func-
tions like audio mixing are also controlled with low-level
AT-type commands, but are manipulated using sliders in the
GUL

The voice mode application firmware is driven primarily by
DSP SPORT interrupts. Every incoming 16-bit SPORTO word
from XBAR triggers an interrupt, which in turn causes the
SPORTL interrupt service routine to execute. Likewise, every
16-bit SPORTO word from the CODEC causes the SPORTO inter-
rupt service routine to execute. The SPORT1 interrupt service
routine is responsible for audio I/O with XBAR and queue-
ing AT commands as they arrive. Commands arrive asynchro-
nously, that is, they can arrive at any time, while audio ar-
rives in 8-piece bundles every 125 microseconds (one frame)
as described earlier. Normally, every piece of data received
by SPORT1 causes an interrupt, but the firmware disables
these interrupts for the rest of a frame once it recognizes the
first piece of audio data. Otherwise, at least eight context
switches would occur every frame, which would render the
system useless. Once the SPORTL interrupt service routine has
received all of the audio samples, it is responsible for trans-
mitting the new audio back to XBAR for routing to the work-
station (i.e., headphones and/or disk).

The SPORTO interrupt service routine is responsible for receiv-
ing and transmitting telephone-line audio and mixing all
audio data, including DTMF tones. Before mixing can occur
in the DSP, all of the LSBs must be appended to the MSBs.
Remember that each 16-bit sample transferred between
XBAR and the DSP is divided so that the most-significant
byte contains the data type and the least-significant byte
contains the data. Thus, all the data from XBAR is put back
into 16-bit linear format before transfer to the CODEC.

The audio input and output amplitude matrices, built by the
user via the GUI, are used to determine what the final mix
will sound like. The DSP firmware processes each output in
sequence by adding together any inputs that are on to create
a total value for each output. Any gain adjustments are made
at this time as well. When this is completed for all outputs,
the resulting 16-bit values are broken into MSBs and LSBs, if
required.

Audio data that is meant for XBAR is transmitted during the
next XBAR audio frame. Audio data meant for output to the
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Call Progress, DTMF Tones, and Tone Detection

HP TeleShare’s voice mode firmware has the ability to detect a number of tones
used commonly in telephone communications, including DTMF tones and call
progress tones like busy, ringback (the ringing sound you hear when you call
someone), and dial tone.

DTMF Tones

Dual-tone multifrequency (DTMF) tones are made up of two Separate tones, as the
name suggests, and can be accurately generated using easily understood principles.
The DTMF standard specifies two sets of distinct tones, called row frequencies
and column frequencies (see Fig. 1). The row frequencies correspond to the hori-
zontal rows on a standard telephone touchpad. The column frequencies correspond
to the vertical columns on the touchpad, plus an additional column to the right of
the last touchpad column.

This makes eight separate frequencies, which combine for a total of sixteen DTMF
tones (see Fig. 2).

Generation of a DTMF tone is accomplished by creating a sinusoid for each of the
two frequencies, row and column, and then adding the results. In a digital imple-
mentation, the sinusoids are computed and added on a sample-by-sample basis.
HP TeleShare uses a five-coefficient Taylor series approximation for the sinusoid
generation. The sinusoid samples are updated and added at 8 kHz, or every 125
microseconds, and the sum of the sinusoid samples is used as the current DTMF
sample.

Tone Detection

Tone detection is accomplished through the use of a 512-point fast Fourier transform
(FFT), which is implemented in the ADSP2101 C-language run-time library. The
FFT, when given a set of samples of an input signal over some time interval, returns
the frequency spectrum of the signal during the interval. This can be done in al-
most real time with a DSP, making it very useful for detecting incoming tones. The
following important rules and relationships should be noted concerning sample
rate, input points, output points, time, frequency, and the FFT in general:

The FFT requires complex (real and imaginary) data for input (two arrays).

The imaginary input array may be filled with zeros if unused.

The output data is complex (two arrays).

The frequency spectrum returned covers half of the sampling frequency.

Only the first half of output data is used, and the other half is a mirror image.

The output frequency resolution is equal to (sampling rate)/(number of input points).

Using an 8-kHz sampling rate and 512 points causes the FFT to return a spectrum
from 0 to 4 kHz, with 512 complex output points. The second 256 output points
can be ignored since they are the mirror image of the first 256. The output will
have a resolution of 15.625 Hz per point, using the formula above. These output
points will be referred to as bins since they include spectral data on either side of
each point.

HP TeleShare calculates magnitude-squared values for each bin by squaring the
real and imaginary values at each point and adding them. The magnitude-squared

Column Frequencies
1336 Hz 1477 Hz

1209 Hz

1633 Hz

697 Hz A

770 Hz

Row
Frequencies
852 Hz

941 Hz

Fig. 1. Dual-tone-multifrequency digits and the frequencies associated with them.

Frequency (Hz)

512-Point FFT Index

Progress 480 + 620 30.72 + 39.68
Tones

DTMF 7 852 + 1209 54.53 +77.38
16
DTME DTMF 8 852 + 1336 54.53 +85.5

Tones

Fig. 2. Call progress and DTMF tones recognized by HP TeleShare.

values correspond roughly to the power of the signal in each bin. Once the powers
are known for each bin in the spectrum, they can be analyzed to see if any DTMF
or call progress tones are present.

As an example, suppose the telephone has been taken off-hook in preparation for
dialing and HP TeleShare is configured to check for dial tone. 512 samples of the
input signal would be stored in the real input array, while the imaginary array is filled
with zeros. Next, the FFT function is called, returning the real and imaginary arrays.
The magnitude-squared values of the first 256 bins are computed using the two
output arrays. The two frequencies that make up a dial tone are 350 and 440 Hz (see
Fig. 2), so FFT indexes (or bin numbers) must be computed for these frequencies:

350/15.625 = 22.4 440/15.625 = 28.16

An effective method of checking for the existence of a particular frequency is to
compare the power present at that frequency with the total power of the spectrum.
This is done quite easily with magnitude-squared values since they represent
power in each hin already. Total power is simply the sum of all the magnitude-
squared values for the first 256 FFT return values. Divide this into the power of the
frequency being checked for, and the result is the percentage of total power for
that frequency. For example, when checking for 350 Hz, compute the sum of the
power values for bins 22 and 23 since the real index (22.4) falls between them,
and then divide by the total power. The result is the percentage of the total power
present around 350 Hz. The same can be done for 440 Hz, using bins 28 and 29.

Once the percentage of total power is calculated, a comparison can be made to see
if the power in each frequency meets match criteria. The HP TeleShare firmware
typically uses 35% of total power as a match condition. In other words, if the power
present at the desired frequencies is 35% or more of the total power, dial tone has
been detected. Otherwise, no dial tone is found.

The number of bins used in the comparison and the match criteria can be fine-
tuned for a particular application. The match criteria can include other tests and
can be relaxed or tightened as needed. The number of bins used can be influ-
enced by the total number of points in the FFT and by a preprocessing tool that
does windowing. Windowing is used to create a finite-length sequence from a
continuous sequence. It is basically a digital filter that truncates an infinite-length
input sequence while preserving its frequency characteristics. Since we are grab-
bing finite pieces (sequences) of data, we need to window the data.
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telephone line is immediately sent to the CODEC without
being split in half. Since both interrupt service routines run at
8 kHz, there is no need to worry about sample rate changes.
DTMF audio data is only available for mixing when a tone is
being generated. A new DTMF sample is generated during
every SPORTO interrupt and is based on the sample rate (al-
ways 8 kHz) and the time elapsed since the tone began.

All of these interrupts and audio manipulations require al-
most all of a DSP’s processing bandwidth and can effect
some areas of system performance. Because of DSP band-
width limitations, DTMF detection can have a slight, but no-
ticeable effect on the audio quality heard by the user. How-
ever, in unattended modes like answering machines or
voicemail (where DTMF detection could be used for such
things as navigation), this should not be a concern. The de-
fault configuration has DTMF detection disabled, since the
typical user will never use it, and the current GUI does not
support it.

Fax and Data Modem Operation. The fax and data mo-
dem functionality was codeveloped by HP and Digicom Sys-
tems Incorporated and uses their SoftModem technology.
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The fax mode allows transfers up to 14,400 bits/s and covers
Group 3 Class II and all fallbacks. Data mode supports trans-
fers up to 14,400 bits/s (V.32bis) and can reach peak rates of
57,600 bits/s with compression.

Conclusion

HP TeleShare effectively combines telephone communica-
tions capability with a low-cost computer workstation. Con-
text switches between the display and the telephone are
minimized by integrating the telephone into the computer
system and providing an easy-to-use graphical user interface.
Voice, fax, and high-speed data modes are supported using
flexible digital signal processing technology.
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Product Design of the Model 712
Workstation and External Peripherals

A product design without fasteners and the use of environmentally
friendly materials and low-cost parts with integrated functions provides
excellent manufacturability, customer ease of use, and product

stewardship.

by Arlen L. Roesner

The HP 9000 Model 712 workstation and and the three new
peripherals that go with the product are an excellent exam-
ple of computer integration and simplicity. The new work-
station, while providing a new class of performance with
HP’s new PA-RISC PA 7100LC processor, pushed the enve-
lope of product design by using relatively few and inexpen-
sive parts. In addition to simplicity and low cost, the product
promotes good product stewardship by making parts easy to
identify and recycle. Customers find the hardware easy to
manage because there are no fasteners to deal with, and all
the components snap or drop into place. The main work-
station product is a small compact size that fits easily under
a monitor or stands vertically on the desk, and the external
peripherals can be positioned on the desktop where they are
most convenient to the user. Fig. 1 shows the Model 712
workstation and its three peripherals.

Model 712/60

Fig. 1. HP 9000 Model 712 workstation and related external
peripherals.
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Outward Simplicity

Several assemblies of the Model 712 workstation products
have high levels of functional integration. This functional
integration tends to make components more complex, but
yields an outer simplicity by reducing the number of physi-
cal parts and the methods necessary to work with them.
Once configured, the only accessible components of the
Model 712 workstation include the chassis, system board,
option boards (including memory), disk drive, flexible disk
drive, and top cover. All of these components are accessed
through quick removal of the cover and the manipulation of
a few snap or drop-in fits, which require a minimum of time
and effort. Fig. 2 shows the workstation and one of the pe-
ripherals with their covers removed. Benefits of this result-
ing simplicity include better manufacturability, easier cus-
tomer use and configuration, and serviceability.

Fig. 2. The Model 712 workstation and hard disk peripheral with
top covers disassembled.
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Fig. 3. Top view of the Model 712 without top cover.

Electronics

The system electronics is the place where integration is most
likely to be first noticed in the Model 712 product. Electronic
assemblies consist of one main system board, a power supply,
three optional circuit boards, and up to four memory SIMMs.
The main system board is relatively small, and all of the core
electronics is incorporated onto this board through integra-
tion of functionality into relatively few VLSI components.
(Fig. 3 in the article on page 9 shows the main system
board). The main system board uses dual-sided surface
mount construction, with I/O connector space being pro-
vided mostly by double-high (stacked) bulkhead connectors.
Optional boards are provided for telephony, extra I/O, and
high-resolution graphics. Compared to today’s personal com-
puters, the Model 712’s system board functions are usually
found on a personal computer’s motherboard, backplane (if
any), and two to three expansion boards. This level of inte-
gration on the Model 712 exceeds the density of personal
computer functionality, while providing current workstation
performance.

Chassis

The chassis assembly consists of a plastic base, a metal chas-
sis, a metal liner for EMI containment of the rear I/O con-
nectors, and a plastic rear dress panel (see Fig. 4). The dress
panel includes silkscreened graphics to identify the connec-
tors and state necessary regulatory information, eliminating
the need for information labels. The chassis has a variety of
holes and embossments to assist in joining the plastic parts
to it. The plastic base provides outer air venting and cos-
metic appeal to the product while also containing several
snaps and guides for mating parts. The metal liner provides
EMI finger contact to all connectors in one part, whereas
previous products often required many different clips for
such functionality. Held together via plastic heat stakes, the
plastic base, the metal chassis, the metal liner, and the plastic
dress panel make up the main assembly chamber of the
product. The main circuit board, power supply and cover,
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disk brackets, and top cover all snap or drop into this chas-
sis. Option boards are also easily installed into the chassis on
top of the main system board, with integral bulkheads that
mate vertically to chassis cutouts (also without fasteners).

Power Supply Cover

The power supply cover is another example of integration.
Many parts were “designed out” by this single plastic part
that performs six functions. The main function is to protect
end users from dangerous voltages by shrouding the exposed
power supply. The cover snaps into the chassis from front to
rear and is removable only by using a screwdriver to disen-
gage the snap that holds it in place. In addition to shrouding
the power supply, the cover secures the power supply board
in place, houses the fan and speaker, channels air flow, and
provides structural support for the monitor. The fan simply
snaps down inside the cover and seals to the sides and top
of the cover. The speaker slides down and press fits into a
simple pocket, which provides acoustic baffling. After the
cover is installed, cables from these devices are routed to the
main system board for electrical connection.

HP-PAC Disk Brackets

The disk brackets are made of HP’s newly patented HP-PAC
material.] This material is made of expanded polypropylene
beads, and is used most often to produce shipping carton
cushions for many types of products. Instead of placing this
material around a finished product to cushion it in a ship-
ping carton environment, it is instead formed to fit inside a
product with integral recesses to embed internal compo-
nents. For the Model 712 workstation, the HP-PAC material is
used to hold the hard disk and flexible disk mechanisms in
place. The HP-PAC used in the workstation consists of three
parts: a bottom shell which provides a recess for both flex-
ible and hard disk, and two separate top pieces for covering
each disk mechanism (see bottom portion of Fig. 4). Be-
cause of the cushioning properties of the HP-PAC material,
the disk drive mechanisms benefit from reduced shock and
vibration levels. The HP-PAC material also provides integral
air channels for inlet air to be drawn across hot areas of the
disk drive mechanisms. The interesting feature of HP-PAC is
that no screws are needed to install the mechanisms. The
devices simply drop into recesses inside of the cushioning
material, and cables can be connected directly to the em-
bedded mechanisms. Once in place, the chassis enclosure
then retains the top and bottom shells of HP-PAC around
each device.

Top Cover

The top cover includes a configurable bezel for the flexible
disk area, a plastic top shell, and a thin metal liner to com-
plete the EMI enclosure. The liner is held to the cover via
plastic heat stakes and has a series of fingers on each side of
the cover to contact the chassis and contain EMI radiation.
The flexible disk bezel is designed to snap into the front of
the cover, which then configures the frontal appearance of
the product. The cover assembly drops vertically onto the
chassis and then slides rearward until alignment hooks and
snaps in the cover engage to hold the cover in place.
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External Peripheral Products

The product design of the three external peripherals also
includes a large degree of functional integration. Each of
these boxes is designed as a miniature Model 712 work-
station, with HP-PAC cushions providing location and sup-
port for the drive mechanism, a printed circuit board (for
power conversion), power switch plunger, and cabling. The
plastic cover for each product includes any necessary doors,
light pipes, and buttons. The chassis assembly of each prod-
uct integrates a plastic base, metal chassis, spring clip, dress
panel, and SCSI signal cable (attached with screws by the
vendor). Thus, final assembly parts involved in the manufac-
turing of the box include only the chassis assembly, internal
power cable, printed circuit board, plunger rod, HP-PAC,
disk mechanism, and top cover. Like the workstation, there
are no fasteners for manufacturing or the customer to deal
with, and the top cover snaps into place to retain all parts
inside.

Low Cost for Entry-Level Pricing

To command lower material costs for mechanical compo-
nents, all custom plastic and sheet-metal parts were hard-
tooled for mass production. The chassis of each product was
designed with a minimum of folded features to reduce part
complexity and the cost associated with that complexity. All
major sheet-metal parts use progressive tooling for the low-
est price.

To reduce the amount of final assembly time (and labor
costs) involved in the product, components were designed
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e Fig. 4. The Model 712 work-

station showing components
disassembled from the chassis.

Flexible Disk

with a high degree of functional integration. Integrated com-
ponents (such as chassis or top cover assemblies) are assem-
bled by vendors, placing the burden of labor on these
non-HP processes and thus achieving lower pricing of the
final product. This functional integration of components also
lowers cost by reducing part count and related inventory
management.

Because of the no-fastener design, final assembly takes
under four minutes for the workstation product and compa-
rable times are achieved for the external peripherals. This
ease of manufacturing lowers manufacturing costs because
of reduced assembly time and overhead costs. It also makes
the product much better suited to indirect market channels,
which prefer to configure products themselves and often do
this at the last possible moment before shipment.

Environmentally Friendly

The Model 712 workstation and peripherals also conform to
HP’s new guidelines for product stewardship. Virtually every
component of the workstation and peripheral products can
be easily disassembled, identified, and recycled. Each plastic
part contains engraved information that identifies the type of
plastic used, and only four different types of plastic are used
within the entire family of products. To assist the disassem-
bly process, the products use plastic heat staking to join
parts together, which can easily be cut away during the dis-
assembly process. The new HP-PAC material can be recycled
as well, either by grinding to pellet size and reusing in
other shipping cushion parts, or by melting the material
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down to solid plastic. And again, because there are virtually
no fasteners to deal with, disassembly is quick and thus
more parts are given to recycling. Materials with bromide
compositions have been avoided, except for the HP-PAC
parts, which require a bromide flame-retardant treatment to
meet safety requirements.

Other product stewardship features include:

No painted components (all plastics with molded colors)
No plated plastics

No adhesives

Required labels can be recycled along with plastic base
material
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* Reusable aftermarket components (flexible and hard disk,
power supply, CPU, and fan)

» Bulk packaging of final assembly components implemented
on larger parts (reduces manufacturing waste)

e Printed circuit boards built in approved non-ODS (ozone-
depleting substance) processes

* Embedded fan (low acoustic noise).
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Development of a Low-Cost,
High-Performance, Multiuser Business

Server System

Using leveraged technology, an aggressive system team, and clearly
emphasized priorities, several versions of low-end multiuser systems
were developed in record time while dramatically improving the product’s

availability to customers.

by Dennis A. Bowers, Gerard M. Enkerlin, and Karen L. Murillo

The HP 9000 Series 800 Models E25, E35, E45, and E55 (Ex5)
and the HP 3000 Series 908, 918, 928, and 938 (9x8) busi-
ness servers were developed as low-cost, performance-en-
hanced replacements for the HP 9000 F Series and low-end
G Series and the HP 3000 Series 917, 927, 937, and 947. The
development of the PA-RISC PA 7100LC processor chip and
the LASI (LAN/SCSI) I/O interface and the evolution of
DRAMs for main memory enabled the development of these
low-end servers. The PA 7100LC and the LASI I/O interface
are described in the articles on pages 12 and 36 respectively.

The priorities for the Models Ex5 and Series 9x8 server proj-
ect were short time to market, low cost, and improved per-
formance. The functionality and quality of the new servers
were to be as good as the products they were replacing, if
not better. The challenge was to get these new servers to
market as soon as possible so that HP could continue to be
competitive in the business server market and our customers
could benefit from better performance at a lower price. We
were able to get the first versions of these systems com-
pleted, released, and shipping on time with all new VLSI
components.

Low-Cost, Higher-Performance Features

The principlal reason for achieving high integration and low
cost for the Model Ex5 and Series 9x8 servers was the devel-
opment of the PA 7100LC processor chip, which was being
developed at the same time as our servers. Integrating the
floating-point unit, the 1K bytes of internal instruction cache,
the external cache interface, the TLB (translation lookaside
buffer), the memory controller, and the general system con-
nect (GSC) I/0 interface inside the PA 7100LC processor
chip allowed the Model Ex5 and Series 9x8

designers to condense the CPU and main memory onto

the same board.

Also, at the same time as our new servers were being devel-
oped, DRAM densities doubled (in some cases quadrupled) to
allow more memory to be put into a smaller space. The
Model Ex5 and Series 9x8 servers use the same industry-
standard ECC (error correction coded) SIMM modules used
in the HP 9000 Model 712 and other HP workstations. The
Model Ex5 and Series 9x8 servers use 16M- and 32M-byte
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SIMMS which must be inserted in pairs to provide 32M to
256M bytes of main memory. ECC memory was chosen be-
cause it carries two additional address lines making it pos-
sible to put four times the memory capacity on one SIMM
while staying compatible with industry-standard modules. The
64M-byte SIMM was designed several months after first intro-
duction of the new low-end servers to boost their maximum
memory to 512M bytes. This larger SIMM is not available as
an industry standard.

Four versions of the Model Ex5 and Series 9x8 processor
have been developed, differentiated by clock speed, cache
size, and cost. Each version is fully contained on the system
board (which also contains cache, main memory, processor
dependent hardware and firmware, and 802.3 LAN connect)
and is easily installable and upgradable. Table I lists the
technical specifications for the different Model Ex5 systems
and summarizes the HP-UX* performance characterizations.
The Series 9x8 MPE/iX systems have equivalent CPU hard-
ware, and their specifications are close to those given in
Table 1.

Table |
Technical Specifications for HP 9000 Model Ex5 Systems
Running the HP-UX Operating System

Processor Performance Models

E25 E35 E45 E55
Clock (MHz) 48 64 80 96
SPECint92 44 65 80 104
SPECfp92 66 98 120 156
OLTP Transactions/s 80 125 155 180
Standard memory/cache 16 16 16 16
(M bytes)
Maximum memory 512 512 512 512
(M bytes)
Cache size (K bytes) 64 256 256 1000
Cache SRAM speed (ns) 15 12 10 7.5
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Architecture

Fig. 1 shows a block diagram for the Model Ex5 and Series
9x8 servers.

The general system connect (GSC) bus was designed as a
new, more powerful system bus for higher performance. The
Model Ex5 and Series 9x8 servers only use the GSC bus for
the processor, main memory, and 802.3 LAN through the
LASI chip. The midrange and high-end server systems also
support the GSC bus as their high-performance I/O bus. All
PA-RISC systems support the HP-PB! (HP precision bus) as
the common I/O bus because multiple functionality (hard-
ware and drivers) currently exist for this bus. The interface
from the GSC bus to the HP-PB is accomplished in a chip
called the HP-PB bus converter.

The HP-PB bus converter chip is a performance-improved
version of the bus converter that was used in the HP 9000 F
and G Series and HP 3000 Series 9x7 machines. This chip
allows the Model Ex5 and Series 9x8 servers to leverage
HP-PB I/O functionality from the systems they are replacing.

System Card

PA 7100LC
Processor

Unified Instruction
and Data Cache
64K Bytes (48 MHz)
256K Bytes (64 MHz)

1K-Byte
Cache

The HP-PB bus converter implements transaction buffering?t
as an HP-PB slave, gaining performance improvements of
10% to 28% over its predecessor. The chip supports GSC to
HP-PB clock ratios ranging from 3:1 to 5:1 in synchronous
mode when the GSC bus is operating under 32 MHz. It
switches to asynchronous mode when the GSC bus operates
in the 32-t0-40-MHz range. These ratios and the asynchro-
nous feature of the HP-PB bus converter allow fair flexibility
in CPU and GSC operating frequencies while maintaining a
constant 8-MHz HP-PB frequency. The bus converter also
provides an interface to the access port used for remote sup-
port, and the control signals used for the chassis display and
status registers. The chip is designed for the HP CMOS26B
process and comes packaged in a 208-pin MQFP (metal
quad flat pack).

The other key VLSI chip used in the I/O structure for the
Model Ex5 and Series 9x8 servers is the LASI chip. The LASI

t With transaction buffering, during reads from disk, data is buffered so that HP-PB transac-
tions can continue at maximum pace.
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Fig. 1. Block diagram for the HP 9000 Series 800 Models Ex5 and the HP 3000 Series 9x8 business servers.
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chip is designed to have the same integration impact on core
I/O as the PA 7100LC had on the CPU and GSC bus inter-
face. The workstation products are able to take advantage of
this (see article on page 6), but the multiuser server systems
were not able to take advantage of LASI functionality.

LASI functionality includes interfaces to IEEE 802.3 LAN,
SCSI, processor dependent code, Centronics, RS-232, audio,
keyboard, flexible disk, and GSC bus arbitration logic and
the real-time clock. Because HP-UX and MPE/iX software
drivers could not be made available in time for our release,
only a small subset of LASI functionality could be used on
the new servers. Thus, the decision was made to continue
using the core I/O card from the previous versions of low-
end servers because it provides all the functionality needed.

For the 96-MHz version of the Model Ex5 and Series 9x8
servers, a chip with a subset of the functionality of LASI was
used. This was developed as a cost reduction for those ap-
plications that use only the LAN, GSC bus arbitration, and
processor dependent code path. The 96-MHz version had to
add a real-time clock on the system board to have equiva-
lent functionality to what was needed from LASI.

In addition to the above VLSI chips and printed circuit
boards, the Model Ex5 and Series 9x8 servers have the inter-
nal capacity for two disk drives (4G bytes), two removable
media devices, and up to four I/O slots. The packaging and
power supplies for the new servers are highly leveraged
from the previous low-end server systems.

Meeting Fast Time-to-Market Goals

Meeting deadlines for any program is always a challenge.
Too often it is believed that a few extra hours a week is all
that is needed to keep the project on track. But many well-
intentioned programs soon lose time with unexpected delays
even when the project team is made up of industrious folks
willing to do whatever it takes to stay on schedule.

At large corporations like HP, where releasing a product to
market may span several divisions, the task is even more
daunting. With our lab’s mission of providing world-class
low-end commercial business systems and servers, time to
market is always expected to be a key objective. In the case
of the Model Ex5 and Series 9x8 program, it was the primary
objective. Additionally, we were challenged to keep cost
projections in line with the set goals, and to meet or exceed
the quality of the versions of the low-end servers that we
were replacing. Quality is consistently a key objective on all
HP products.

The main challenge for the Model Ex5 and Series 9x8
program was to achieve (on schedule) an order fulfillment
cycle timet of 10 or fewer days for the entire product family.
With the existing product family averaging order fulfillment
cycle times four to five times larger than our 10 or fewer
days goal, it was evident that for the new servers a
well-orchestrated program that involved the entire system
team was necessary to meet this challenge.

Fig. 2 shows a spider chart of the overall metrics for the
Model Ex5 and Series 9x8 program. Note that the program
achieved or exceeded all planned manufacturing release
goals. Even the factory cost goal was exceeded, which was

T Order fulfillment cycle time is measured from when HP receives a customer’s order to the
time when the order is delivered at the customer’s dock.
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Fig. 2. Spider diagram showing how well the project team for the
Models Ex5 and Series 9x8 servers met their project goals.

at risk when the hardware team added existing material into
the design over less expensive functionality, reducing the
software development schedule. The order fulfillment cycle
time objective was not only achieved but exceeded! For the
first three months of production, order fulfillment cycle time
averaged under nine days.

The following sections summarize the reasons we met or
exceeded our cost, quality, time-to-market, and manufactur-
ing release goals.

Consolidation of Project Team. When the Model Ex5 and
Series 9x8 program was in its early stages of design the de-
velopment team was dispersed in two different geographic
locations. The remote organization was eliminated and the
project development and management were consolidated in
one location under one manager. With this organization,
technical decisions regarding system requirements could be
made quickly and effectively.

Ownership of Issues. A system team composed of representa-
tives from the different organizations involved in the devel-
opment of the Models Ex5 and Series 9x8 servers was orga-
nized. Weekly one-hour meetings were held with the main
focus on issues or concerns that impacted the project sched-
ule. Communication was expected to be limited to discus-
sions that affected everyone. Issues were captured and as-
signed an owner with a date assigned for resolution of the
issue. Representatives at the meeting were expected to own
the issues that were presented to their organization. No issue
was closed until the team agreed upon it. This ensured that
technical problems did not “bounce” around looking for an
owner.

Interdivisional Communication. Effective interdivisional teams
establish good working relationships to ensure timely re-
sponse to actions and issues. An example was the decision
to change the core I/O functionality. While the hardware
team improved their factory cost by incorporating new, less
costly hardware, the software team would have realized a
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longer schedule to provide new software features to sup-
port the new hardware. After reviewing the plans, the
hardware team, aware of the critical time-to-market objec-
tive, recommended a return to the existing I/O feature
implementation at an impact to factory cost for the sake of
the software development team’s ability to improve their
schedule. The end result was that the hardware team still
achieved their factory cost goals (by making adjustments
elsewhere), and the software development team achieved
their schedule goals.

Leverage Design Where Possible. When time to market was
established as the key objective for the project, the develop-
ment teams realized that leveraging from as many existing
products as possible would greatly benefit achieving this
goal. The following components were leveraged from new
or existing products:

Product package. Sheet metal was leveraged from the exist-
ing low-end business servers with minor changes to accom-
modate new peripherals and a different processor and main
memory partitioning scheme. Plastic changes were kept to a
minimum in an effort to use tools already established. (Only
one new tool was required.)

Base system configuration. The base system was established
using the I/O printed circuit boards and several peripherals
available on the existing low-end servers.

Memory. The memory design was leveraged from the mem-
ory configuration used in the HP 9000 Model 712 work-
station, which uses SIMM modules for the base memory
system. Higher-density memory was designed specifically
for the Model Ex5 and Series 9x8 servers after first release to
increase their maximum memory capacity.

Power supply. The power supply was leveraged from the
existing servers.

Printed circuit boards. The core I/O boards from the existing
servers were used with only minor firmware changes to the
HP-UX version. The processor board and backplane were
new designs based on ideas shared with the Model 712 de-
velopment team.

VLSI. The PA 7100LC processor chip and the LASI core I/O
chip were leveraged from the Model 712 workstation, which
was being designed at the same time as our server systems.
Firmware. Some of the firmware and I/O dependent code
was codeveloped with the Model 712 development team.

Fast Time to Manufacturing Release. The use of concurrent en-
gineering played a key role in reducing the back-end sched-
ule. The back end of the schedule consists largely of manu-
facturing activities (including final test and qualification)
aimed at achieving a release of the product for volume ship-
ment. In the case of the Model Ex5 and Series 9x8 servers,
with the individual boards being built in two geographically
different manufacturing facilities, it was imperative that com-
munication between these entities receive ample attention.

To facilitate this communication, a coordination team consist-
ing of new product introduction engineers and new product
buyers and logistics people were located in close proximity
with the R&D development team. Everyone attended the
system team meetings, which were led by the hardware lab,
to ensure that the most current information was applied to
the overall system schedule. In addition, production build

82 April 1995 Hewlett-Packard Journal

meetings were held before, during, and after each prototype
run to discuss build results. Ensuring that all manufacturing
personnel realized that these systems were engineering pro-
totypes, with a high potential for problems, was a difficult
task. Most people were not used to seeing lab prototypes
being built in a production process. Since the line was
shared with currently shipping products, it was extremely
important to ensure that building the prototypes did not
impede shipping other products.

Prototype Management. Two operating system environments
were required for the new servers, the HP-UX operating
system release 9.04 and the MPE/iX operating system version
4.0. Since these environments were under development at
the same time as our products, it was essential that hardware
prototypes be delivered efficiently and be of sufficient qual-
ity to ensure expedient use by the software development
groups. Thus, three key objectives were considered essential
by the development groups. First, units had to be of the
highest quality. Second, delivery of the units had to be on
time. Finally, downtime because of hardware problems had
to be minimized.

To accomplish the first goal, all prototypes were built using
the entire production process. No prototypes were hand-
crafted in the lab. This ensured that units were built with the
same quality standards as are applied to released systems.
Additionally, each customer was assured of receiving the
latest revision of materials released to production. Even
new parts not covered under manufacturing release criteria
were guaranteed to be of the same revision level. All revi-
sion levels were tracked on each unit for the life of the
project.

For the second objective, a customer priority list was gener-
ated based on customer orders and needs. After the orders
were submitted to the manufacturing systems, build priorities
were set based on the critical needs being supplied first.
From functional prototypes to production prototypes, up-
grade kits were structured and made available. In cases
where a new system was not required, customers had the
option of moving immediately to an upgrade. Also, perfor-
mance upgrades were designed to require a swap of the
processor card only.

Tracking the revision level of all hardware was essential to
achieving the third objective of minimizing downtime be-
cause of hardware. Another key point was being able to
react to a customer’s problem quickly. We used a prerelease
support team at another HP division to ensure timely re-
sponse. Spare material was purchased by the support team
and defective parts were returned to the lab for analysis.

Using all these methods, we were able to achieve the goal of
having all operational prototype units upgraded to manufac-
turing release equivalence before manufacturing release.

This guaranteed test partners use of the machines for future
development without the “not-quite-final-product” concerns.

We were not without our share of problems in terms of
effectively managing the prototypes. For instance, several
units were placed inside an environmental test chamber for
weekend testing. During the early morning hours on a
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Sunday, the temperature controller of the chamber went out
of control, ramping the temperature to beyond 70 °C. The
additional heat caused the fire sprinkler system in the cham-
ber to turn on, flooding the chamber at a rate estimated at 10
gallons per minute. The units were standing in four feet of
water, but with the disk drives external to the chamber, the
test continued. When the chamber was finally shut down,
the water mopped up, and the results checked, it was dis-
covered that two of the seven units,which were on the top
rack, out of the standing water, continued to operate without
failure throughout the test. This test was affectionately
named the “bathtub test.”

Time-to-Market Focus. Establishing the time to market as the
key objective for the program was not enough to ensure its
success. The teams involved required constant reminders to
stay focused on this objective and make trade-offs accord-
ingly. Once the schedule was confirmed and accepted, it
was important to acknowledge the progress. Any activities
that appeared in danger of jeopardizing the schedule were
reviewed and tackled accordingly.

However, the project team realized that in the past changes
to system requirements had a big impact on meeting project
schedules. Changes to system requirements to modify or
include a feature that might improve sales or could be easily
implemented at the cost of another metric might result in
significant changes to the hardware or operating system de-
sign. In the case of the Model Ex5 and Series 9x8 servers,
the system team implemented a process that was also used
by the software development teams to control design
changes. This process is called change control, which re-
quires the change requester to provide a specific level of
information to determine whether a particular change is vi-
able. While this is not a new idea, the Model Ex5 and Series
9x8 development team elected to make one additional rule
change. Each change request submitted would be briefly
looked at to determine how the change would affect the
base system. In other words, we wanted to ensure that a
change was critical enough that it needed to be added to the
products planned for the first release.

The hardware system team put on hold all change requests
that were determined not to be required for the first release.
To avoid causing lots of changes to the software after first
release, some of the critical enhancements that were consid-
ered crucial to future sales were briefly reviewed and in-
cluded in the initial software release. In some cases this
meant no changes were required after the first software
release. However, there were some instances of patches re-
quired for full functionality.

Customer Order Fulfillment Cycle Time

For the Model Ex5 and Series 9x8 servers to stay competitive,
cost and performance were not the only items that played an
important role. During 1993, it was clear that HP had an order
fulfillment cycle time problem, which of course made our
customers unhappy and affected our competitiveness. A task
force was formed to address HP’s order fulfillment cycle time
problems. We found out that results from this task force
would not arrive in time to help us with our new products.
Thus, we formed a team seven months before introduction to
ensure that the reduced order fulfillment cycle time process
for the Model Ex5 and Series 9x8 servers was in place when
the products were ready to be shipped to customers.
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Our goal was to reduce the time between the receipt of a
customer purchase order for a system and the time when the
system is delivered to the customer site. We wanted to re-
duce this time by 75% of what it was for our existing servers.
To accomplish this goal, the following changes were made
before product introduction:

The product structure was made much simpler and it
includes fewer line items.

Product offerings to distributors were unbundled.

Product numbering for distributors’ orders had a single SKU
(stock keeping unit) for ease of ordering.

The rules for our factory configuration system and field con-
figuration system were mirrored.

Early and proactive material stocking was performed before
introduction to ensure that plenty of material was on hand
to meet customer demand immediately.

Factory acknowledgments were automated for clean orders.
Intensive training was given to order processing personnel
in the field and the factory about the Model Ex5 and Series
9x8 servers two months before introduction.

Consignment, demonstration, and distributor units were
stocked before introduction.

More capacity was added to the factory, and assembly
processes were streamlined.

All new processes were tested intensively before
introduction.

With these steps we were able to meet and exceed our order
fulfillment goal.

Conclusion

The real success of the Model Ex5 and Series 9x8 server
program was that the goals for fast time to market and re-
duced order fulfillment cycle time were achieved. These
were major accomplishments considering the events that
took place throughout the whole project including the devel-
opment of a major VLSI component, consolidation of the
design team from different divisions and locations, commu-
nication between different manufacturing entities, and a
stream of last-minute catastrophes such as flooding proto-
types in the environmental test ovens and several eleventh-
hour VLSI bugs that had to be fixed.
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HP Distributed Smalltalk: A Tool for
Developing Distributed Applications

An easy-to-use object-oriented development environment is provided
that facilitates the rapid development and deployment of multiuser,

enterprise-wide distributed applications.

by Eileen Keremitsis and Ian J. Fuller

HP Distributed Smalltalk is an integrated set of frameworks
that provides an advanced object-oriented environment for
rapid development and deployment of multiuser, enterprise-
wide distributed applications. Introduced in early 1993,

and now in its fourth major release, HP Distributed Smalltalk
leverages the ParcPlace Smalltalk language and the Visual-
Works development environment. Together, HP Distributed
Smalltalk and VisualWorks enable rapid prototyping, devel-
opment, and deployment of CORBA-compliant applications.t

In the global marketplace, corporate information technology
needs are increasingly demanding because worldwide com-
petition requires geographically dispersed operations, chang-
ing markets require agility to remain competitive, pressure to
improve return on investment requires strong cost controls,
timely access to complete information is crucial for business
success, and finally, corporate users require access to both
legacy and newly developed information sources and appli-
cations.

HP Distributed Smalltalk helps answer these business needs
by supporting;:

Easy on-demand access to information and services across
the enterprise

Dynamic interaction of distributed people and resources
Greater application flexibility and ease of use

Insulation from differences in operating environments

An architecture that supports an evolutionary approach in-
cluding legacy system integration

Industry standards that will allow application interoperability
across languages, high productivity, and code reuse.

Customers can take advantage of HP Distributed Smalltalk’s
easy-to-use development environment to create distributed
solutions to compete effectively in the global marketplace.
For example, with HP Distributed Smalltalk, customers might
build on the sample Forum application (described later) so
that their geographically dispersed users can simultaneously
annotate a shared document. Also, customers might use HP
Distributed Smalltalk to create three-tiered database access
applications that extend the advantages of existing client-
server architectures for better isolation between user inter-
faces, data manipulation models, and legacy and new data.

T CORBA, or Common Object Request Broker Architecture, defines a mechanism that en-
ables objects to make and receive requests and responses. HP Distributed Smalltalk's
implementation of this architecture is described later in this article.
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Three-tiered applications are the most efficient and scalable
form of software design for building complex applications.
They carefully separate the user interface (tier one) from the
business rules governing the application (tier two) and the
persistent storage for the information in a database (tier
three). Each tier can reside on a different machine in a net-
work, making best use of the network resources. HP Dis-
tributed Smalltalk contains objects that enable the straightfor-
ward construction of these applications.

Using HP Distributed Smalltalk

An application written in HP Distributed Smalltalk is able to
respond to service requests from remote systems. Remote
entities that request services of an application do not have to
be written in HP Distributed Smalltalk as long as they are in
a system that implements the standard ORB (object request
broker) and common object services from the Object Man-
agement Group (OMG). See “Object Management Group” on
page 86 for a description of these items.

In many cases an HP Distributed Smalltalk application’s com-
ponent objects are distributed across several systems. These
distributed objects can interact seamlessly so that end users
are unaware of where the objects are located.

An overview of the process of running an HP Distributed
Smalltalk application is shown in Fig. 1. For incoming re-
quests to the service provider, the ORB translates requests
from the implementation-neutral Interface Definition Lan-
guage (IDL) to the local language (ParcPlace Smalltalk) and
forwards them to the correct local object for processing. To
complete the request, the service provider’s ORB takes re-
turn values, translates them to IDL and forwards them to the
remote ORB from which the request was received.

Not only does HP Distributed Smalltalk support distributed
application delivery but it also provides an environment for
distributed application development, which includes:

A complete implementation of the Object Management
Group'’s latest standards

A rich suite of tools for application development and admin-
istration including simulated remote test support, a remote
debugger, and an IDL interface browser and generator

A user interface environment and sample applications that
developers can reuse or extend, or simply use to become
familiar with the system.
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Object Management Group

The Object Management Group, or OMG, is a nonprofit international corporation
made up of a team of dedicated computer industry professionals from different
corporations working on the development of industry guidelines and object man-
agement specifications to provide a common framework for distributed application
development.

OMG publishes industry guidelines for commercially available object-oriented
systems, focusing on areas of remote object network access, encapsulation of
existing applications, and object database interfaces. By encouraging industrywide
adoption of these guidelines, OMG fosters the development of software tools that
support open architecture, enabling multivendor systems to work together.

To define the framework for fulfilling its mission, in 1992 OMG published its Object
Management Architecture Guide. This guide provides a foundation for the develop-
ment of detailed interfaces that will connect to the elemental components of the
architecture. Fig. 1 shows the four main components of this architecture:

The object request broker (ORB) enables objects to make and receive requests
and responses in a distributed object-oriented environment.

Object services is a collection of services with object interfaces that provide basic
functions for creating and maintaining objects.

Common facilities is a collection of classes and objects that provide general-purpose
capabilities useful in many applications.

Application objects are specific to particular end-user applications.

Common
Facilities

Application
Objects

Services

Fig. 1. The object management architecture.

The application objects, object services, and common facilities represent groupings
of objects that can send and receive messages. The software components in each
of these primary components have application programming interfaces that permit

their participation in any computing environment that is based on an object tech-
nology framework.

In addition, because HP Distributed Smalltalk is an extension
of VisualWorks, developers are able to do their programming
in a language they already know (ParcPlace Smalltalk) using
the VisualWorks application builder.

VisualWorks is an implementation of the Smalltalk program-
ming language and environment. It provides an excellent
environment for building standalone and simple client/server
applications that are 100% portable between many of the
major computing platforms and operating systems. HP saw

an opportunity to enhance the capabilities of VisualWorks to ¢
be the basis for next-generation applications by adding ob-
jects that enable VisualWorks systems to communicate di-
rectly using a standardized set of communications facilities.

Framework
The HP Distributed Smalltalk framework is an environment
that encompasses everything from communication with other

Remote System

systems through database access to the object-oriented Parc-
Place Smalltalk language and a rich suite of developer’s tools,
all seamlessly integrated to facilitate distributed application
development.

The major components of HP Distributed Smalltalk are
shown in Fig. 2 and briefly defined below:

HP Distributed Smalltalk ORB. This is a full implementation
of the Object Management Group’s Common Object Request
Broker Architecture (CORBA).

Remote Procedure Call (RPC) communication. This compo-
nent supports efficient and reliable transfer of messages
between systems.

HP Distributed Smalltalk object services. This includes all
standard object services required by distributed systems, as
well as support for creating and maintaining objects and the
relationships between them.
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Fig. 1. Overview of the HP
Distributed Smalltalk process.
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Fig. 2. The major components of HP Distributed Smalltalk.

Multiplatform support. HP Distributed Smalltalk applications
that run on one platform (hardware and operating system
combination) can run, without porting, on any other sup-
ported platform.

OODBMS and RDBMS access. HP Distributed Smalltalk pro-
vides database access directly to HP’s Odaptert and Servio’s
GemStone as well as to Sybase and Oracle (via Visual-
Works). HP Odapter can be used to provide access to a
variety of other database systems.

HP Distributed Smalltalk developer tools and services. This
level of the framework provides support specifically de-
signed for developing, testing, tuning, and delivering distrib-
uted applications. HP Distributed Smalltalk incorporates a
rich development environment, application builder support,
and the ParcPlace Smalltalk language.

HP Distributed Smalltalk user environment and services.
These services include a reusable demonstration user inter-
face and desktop environment support for users’ work ses-
sions and normal desktop activity.

HP Distributed Smalltalk sample application objects. These
objects provide developers with example code that can be
reused or extended, or can provide a source of ideas for
developing alternate applications.

The following sections provide more detailed descriptions of
the components that make up HP Distributed Smalltalk.

HP Distributed Smalltalk Object Request Broker

HP Distributed Smalltalk is a complete implementation of
CORBA, the Object Management Group’s specification of an
object request broker. HP Distributed Smalltalk’s compliance
provides the basis for object and application interoperability.

CORBA specifies core services that are required of an object
request broker to support interoperable distributed comput-
ing. The CORBA specification includes the following core
services.

Interface Definition Language Compiler. OMG has defined the
Interface Definition Language, or IDL, to be independent of
other programming languages. Interfaces for objects that can
provide distributed services are written in IDL so that they

1 HP Odapter is a complementary product from Hewlett-Packard that provides an efficient
and scalable link between objects implemented in an object-oriented language such as
Smalltalk or C++ and the entities in an Oracle relational database.
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are accessible to service requesters that might be written in
Smalltalk, C, C++, or another language.

OMG recently approved the IDL-to-Smalltalk language bind-
ing proposed by HP and IBM. This is important because it
allows users to build distributed systems using multiple lan-
guages where appropriate, allowing a Smalltalk object to be
able to request services of a C++ object or vice versa.

Interface Repository. This service provides a registry of distribu-
table object interfaces for a given system. Any object that
remote objects can access has an interface in the interface
repository. For example, when objects on two or more sys-
tems at different locations collaborate in an application, they
interact by sending messages to their interfaces. Since exter-
nal clients have access to an object’s services only through
the object’s interface, the implementation of the object is
private. This privacy provides a variety of benefits, including
security, language independence, and freedom to modify the
implementation of how a service is performed without exter-
nal repercussions.

HP Distributed Smalltalk ORB Support. The object request bro-
ker (ORB) is the key to providing support for distributed
objects. By providing an ORB on each system, HP Distrib-
uted Smalltalk makes the location of any object transparent
to clients requesting services from the object.

When a message is sent to a local object, the activity is han-
dled normally. When a message is sent to a remote object,
the remote object’s local surrogate (created automatically by
the ORB) intercepts the message, then uses the ORB to lo-
cate the remote object and communicate with it (see Fig. 3).
Results returned to the calling object appear exactly the
same, whether the message went to a local or remote object.

An ORB’s responsibilities include:

e Marshalling and unmarshalling messages (translating objects

to and from byte streams for network transmission)

 Locating objects in other images or systems
* Routing messages between surrogates and the objects they

represent.

While a request is active, both client and server ORBs ex-
change packet information to track the course of the request

Machine A Machine B
Apparent

X Connection .
Ogmmqd— — — — — — — — Object 2
Object 2
Surrogate

Object Object
Request Broker Request Broker
Actual
T Connection T

Fig. 3. HP Distributed Smalltalk handles remote access so that a
request to a remote object appears the same as a request to a local
object.
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and resolve any network or transmission errors that might
occur.

Object Services and Policies

Object services extend the core ORB services to support
more advanced object interaction. HP Distributed Smalltalk
implements OMG’s Common Object Services Specification
(COSS), which extends CORBA to provide protocols for com-
mon operations like creating objects, exporting and destroy-
ing objects (life cycle), locating objects (naming), and asyn-
chronous event notification. Additional object services and
policies provide efficient interaction between finer-grained
distributable objects.

Naming.t There is a standard for assigning each object a
unique user-visible name. Names are used to identify and
locate both local and remote objects.

Event Notification.t This is a service that allows objects to notify
each other of an interesting occurrence using an agreed pro-
tocol and set of objects.

Basict and Compound Life Cycle. There are standard ways for
objects to implement activities such as create and initialize,
delete, copy, and move both simple and compound objects,
externalize (prepare for transmission to remote systems), and
internalize (accept objects transmitted from remote systems).
Compound objects, built from simple objects, can include
application components, anything that appears on a user’s
desktop (such as a document, a mail handler, or a graphics
toolbox), complete applications, and so on.

Relationships: Containment and Links. Links allow net-
worked relationships among objects. Objects can be linked
together with various levels of referential integrity (determin-
ing how to handle situations when one of the parties to the
link is deleted), and in one-to-one, one-to-many, and many-
to-many relationships.

Together with links, containment establishes and maintains
relationships between objects. Each object has a specific
location within some container. Containers are related hierar-
chically. HP Distributed Smalltalk provides objects that im-
plement a generic distributed container. Programmers can
use these objects to build specific implementations such as
an electronic mail envelope (containing components of a
message) or a bill of sale (containing information about
items in a shipment) with minimal extra programming.

Properties and Property Management. Properties are part of an
object’s external interface (owner, creation date, modification
date, version, access control list, and so on). They are a dy-
namic version of attributes.

Application Objects and their Assistants. Application objects are
relatively large-grained compound objects that end users
deal with (e.g., a file folder or an order entry form). Applica-
tion assistants are lightweight objects that implement most of
the policies and participate in most of the services that desk-
top objects need to participate in. Application assistants func-
tion as the developer’s ambassador into the object services.
Application assistants can be stored and activated efficiently
and provide the basis for future transaction support.

t This service is specified in COSS 1.0.
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Fig. 4. The bulk of user interaction is with local presentation ob-
jects, minimizing and condensing the need to propagate semanti-
cally relevant changes over the network. Here for example, a user
might choose to look at a chart (semantic object) as a pie, line, or
bar chart presentation object.

Presentation/Semantic Split. A logical split between distributed
objects, the presentation/semantic split provides an efficient
architecture for distributed applications. Local presentation
objects handle the bulk of user interaction, while a semantic
object (which can be anywhere on the network) holds a
shared persistent state of the object (see Fig. 4).

By using the presentation/semantic split, the designer can
choose what part of the application should be shared and
what should be unique to each user. Applications that might
use the presentation/semantic split include a team white-
board where all behavior is shared but each user can write
comments, or a common document with pages that are
unique to each user so that all users can read at their own
pace. A variety of sample applications included with HP
Distributed Smalltalk provide illustrations of how to use the
presentation/semantic split.

While use of the presentation/semantic split is optional, it
facilitates and optimizes distributed application development
and execution. Advantages of using the presentation/seman-
tic split include:

Acceptable performance levels even over wide area
networks

Association of a single semantic object with multiple presen-
tation objects, a critical feature in distributed computing en-
vironments where it is common for many users to work with
the same application

Application access independent of local windowing systems
Better code reusability.

The HP Software Solution Broker described on page 93 is a
good example of using the presentation/semantic split in an
application.

Developer Services

HP Distributed Smalltalk also extends VisualWorks with ser-
vices that support development and test of distributed appli-
cations.
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Fig. 5. The control panel provides an easy-to-use interface to
administrative and developer services.

Control Panel. The technical user interface to HP Distributed
Smalltalk for administrators and developers is invaluable for
testing and maintenance (Fig. 5). The control panel provides:
 Controls to start and stop the system cleanly

e Tracing facilities to log network conversations between ob-

jects
Performance monitoring.

Interface Repository Browser and Editor. The interface repository
browser provides an iconic view of the contents of the inter-
face repository where publicly available interfaces are speci-
fied (see Fig. 6). It is organized hierarchically so that devel-
opers can explore and edit interfaces and construct requests
to use the interfaces.

Shared Interface Repository. In HP Distributed Smalltalk, users
can share an interface repository on a remote system so they
do not have the overhead of keeping a copy of all of the
interfaces on every system. The product also supports ver-
sion management of interfaces, which is very important in
large-scale, evolving distributed systems.

Remote Context Inspector and Debugger. This service is an ex-
tension that allows debugging on remote images when ap-
propriate. It supports object inspection and debugging for

 Support for local RPC testing (simulated distribution)
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Fig. 6. The interface repository
browser can be used to view or
edit interfaces that remote clients
can use to call local objects.
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the entire distributed execution context, including communi- ¢ User object. This object contains information held about end

cation between images. Fig. 7 shows using the debugger to
step through code and inspect objects that might be located
anywhere in a distributed environment.

Stripping Tool. To prepare an application for delivery, devel-
opers use the HP Distributed Smalltalk stripping tool to re-
move unneeded classes and interfaces and seal source code
when application development is complete. The stripping
tool’s user interface suggests likely items for removal (see
Fig. 8).

User Services
User services allow developers to build a desktop or office
environment and control activities during a session.

System Objects. HP Distributed Smalltalk supports a variety of *©

system objects: user, session, clipboard, wastebasket, and
orphanage.

| osTSEWpper | ]

Select classes 1o be removed:

Autioso A
BookCaseFO
BookCase50
v ChartPO 1
[v Charts0
Checker - .
ClaimPO Stripper options
Claim30 O Remove compiler classes
CliphoardPO
Cliphoard30 O Remove extra classes
[ e ar [ Remove *do it’, ‘print it’, “inspect’
DadBenchmark
DaAComponentTest
DaAcontainer?O
DadcontainersO
DadmappedContainerPO
DAaAmappedContainerso i

Repository hint Strip system create files | |[ Exit I

Fig. 8. Interface for the HP Distributed Smalltalk stripping tool.
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users of the system including who they are, how to contact
them, and so on. User objects may be included by reference
in other objects. For example, a user might include a busi-
ness card in a memo that would enable the receiver to get
in touch with the sender.

Session object. All the information required about the state
of a user’s environment, including user login, preferences,
layout, and so on are contained in a session object. The
session object also supports the notion of workspaces, with
the potential for developing richer workspace environments.
It has no icon on the desktop but it interacts with and sup-
ports other application objects.

Clipboard. This is a container for objects that are being cut,
moved, or copied from one location to another.
Wastebasket. This container receives objects that users throw
away. The wastebasket can be cleared when it gets too full.
Orphanage. This is a container for holding objects that are
no longer needed.

Security. Developers can use or extend HP Distributed Small-
talk’s access control services in the applications they build,
setting controls for host systems, users, or both. Host-system
access control lets developers determine whether an image
can receive messages from another system. User-level access
control lets a developer determine whether a given user has
any one of several kinds of privileges (e.g., read or write
privilege) for a given object.

Developers can administer access control programmatically
or from the default user interface.

Example Code

While all HP Distributed Smalltalk code is available to read,
reuse, or extend, the default user interface and certain sam-
ple applications may be the best place to start.

[ Hewlett-Packard Company 1995
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Fig. 9. The screen for presenting the office metaphor and some
typical objects in an office.

User Interface. HP Distributed Smalltalk uses and provides
support for a user interface based on an office metaphor
which is designed for easy use and understanding. In the
default user interface, all the objects a user works with lo-
cally (folders, file cabinets, documents, and so on) are con-
tained in an office. All offices on the same system are in the
same building. Users can navigate between buildings to ac-
cess objects in other offices. Fig. 9 shows a typical office and
some of the objects available in an office.

Sample Applications. Sample applications illustrate the use of
distributed objects. For example, the Forum (Fig. 10) pro-
vides a shared window in which several users can view and
annotate a picture or document. The Notebook is a place to
store both local and remote objects on a desktop.

Users can also build their own objects from any of the sim-
ple objects available, including a table, chart, input field,

BEl

picture, and text window (see Fig. 11). The sample applica-
tions can be extended and customized to create a variety of
simple distributed applications.

Creating Applications

HP Distributed Smalltalk allows VisualWorks programmers to
create distributed applications quickly and easily. Building on
the benefits of Smalltalk and VisualWorks, HP Distributed
Smalltalk users can build CORBA-compliant applications
either from scratch or by modifying existing applications.
Like any Smalltalk application, the distributed development
process is iterative and designed for dynamic refinement.

Development. Distributed application development is a
four-step process.

1. Design and test the application objects locally.

2. Define the object interfaces and register them in the
interface repository.

3. Use HP Distributed Smalltalk’s simulated remote testing
tools (which actually use the ORB to marshall and unmar-
shall object requests) to verify the interfaces specified in the
interface repository.

4. Track messages and tune performance.

Distribution. Once an application is developed, tested, and
tuned locally, it is easy to set it up for distributed use.

5. Copy the application classes to the Smalltalk images they
will run on.

6. Update the interface repositories in these images.

The application can then run in the fully distributed environ-
ment without further change. Except for actual packet trans-
fer, the distributed application is identical to the simulated
remote application developed, tuned, and tested during
development.
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A Software Solution Broker for
Technical Consultants

A distributed client-server system gives HP’s worldwide technical
consultants easy access to the latest HP and non-HP software products

and tools for customer demonstrations and prototyping.

by Manny Yousefi, Adel Ghoneimy, and Wulf Rehder

On a typical working day an HP consultant, one of thousands
worldwide, sits down with a customer to solve a business
problem. The challenge, the customer may tell the consultant,
is to move sales data to headquarters more quickly so that
management can make timely strategic decisions. For a solu-
tion, the consultant might propose a decision support system
that integrates the customer’s older legacy system where the
sales data has been stored traditionally with a faster “ware-
house” database and easy access tools that present the in-
formation in just the form needed, right on the customer’s
desktop. “Let me show you what I mean,” the consultant
says, turning on a laptop computer (which had previously
been connected to a LAN or telephone socket). Navigating
through the windows on the screen, the consultant invites
the customer to look through a virtual shelf filled with data-
bases and access tools, all represented by icons, together
with middleware and application development toolkits (see
page 98). The consultant clicks on an icon and the tool
becomes immediately available for browsing or for self-
paced learning. From here the consultant may show one of
the demos that are included, or navigate the customer
through a hypertext document to more information, alternate
products, additional options, and prefabricated software
building blocks. No wonder that this virtual software labora-
tory is called by HP consultants, “the software sandbox.”
This consultant is actually building—from the tool and prod-
uct portfolio in front of them—a prototypical decision sup-
port system for this customer. How much of this is fantasy
and how much reality?

The answer is that it is all reality now. The software sandbox
that the consultant was starting to “play in” is called the HP
Software Solution Broker (or Broker, for short) and is avail-
able now to HP consultants. Defining and creating a deci-
sion support system is, of course, not play but serious work.
However, the ease and immediacy of the Broker, the ample
choices, and many helpful hints make even urgent business
problem solving an experimental sport. Best of all, the con-
sultant receives these products and tools, together with sup-
port and on-line documentation, free of charge. For this con-
venience, substantial research efforts had to be poured into
building such a virtual software depot, using HP’s own hard-
ware platform and the most advanced object technology.
Before explaining this implementation more systematically, it
is useful to watch our technical consultant and the customer
at work.
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Using the Software Solution Broker

To get a feeling for how the Software Solution Broker is used
we will briefly watch the technical consultant show the cus-
tomer how to build a prototypical decision support system.

After clicking on the icon in the ORB control panel, which
starts the object request broker (an action that in effect
opens the lid covering the sandbox), the consultant activates
the Software Solution Broker icon. Another window opens
offering the Broker’s classification of products, either by ven-
dor, by technology, or by product name. (Alternative paths
into the Software Solution Broker, such as a classification by
business problem, are under development.) Choosing the
i(nformation request) button for technology, the consultant
asks whether the customer wants to see database informa-
tion first or options for the user interface. As an executive,
the customer is eager to see or build a nice GUI. Clicking
on the graphic user interface 1 button brings up several
choices of which three are shown in Fig. 1. Having heard
about VisualWorks the customer selects it and is presented
with the VisualWorks Showcase.

The consultant then shows a VisualWorks demonstration to
explore with the customer what kind of data display win-
dows, control buttons, analysis tools, and other features
would be appropriate. After jotting down these initial re-
quirements the consultant is ready to build a first prototype.
The help button launches a palette of GUI building tools,
and it takes only minutes to draw an example of a transac-
tion entry tool for the transactions underlying the decision
support system the customer wants built (see Fig. 2). Here
the customer interrupts and requests that the data be shown
in spreadsheet form as well as graphically. They agree on
bar chart and pie chart presentations for a first cut and pro-
ceed to discuss the requirements for the underlying data-
base. The Software Solution Broker has a “virtual shelf” of
relational databases that work with VisualWorks, and among
these the customer may have a favorite system, or an already
installed legacy database. They again discuss the pros and
cons while viewing various product demonstrations.

We meet the customer and the consultant again after another
hour or so. By then the VisualWorks front-end tool displays
some real data pulled from a database (Fig. 3). At this point
we leave the executive’s office and describe how the Soft-
ware Solution Broker is constructed.
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Fig. 1. Software Solution Broker user interface.

Constructing the Software Solution Broker

Two considerations determined the architecture and conse-
quently the implementation of the Software Solution Broker.
First, since the products on the Broker have to be accessible
worldwide but will be updated and maintained locally, the
global partitioning between distributed users and a central
server functionality called for a client/server implementation
on a wide area network (WAN). Secondly, the need to ac-
commodate many different types of clients and to be able to
encapsulate many different products in the software server
strongly suggested vendor independence (openness) and
adherence to certain industry standards such as the Common
Object Request Broker Architecture (CORBA).

Software Substrate

Here we will not focus on the WAN implementation but
instead will concentrate on the software substrate on which
the Software Solution Broker is built. In the software sub-
strate (see Fig. 4) we include the entire software kit com-
posed of server and client development tools, tools for
building the client/server interaction components of the sys-
tem, and repository tools. Repository tools are essential for
the construction of a depot that contains the information in
the system, including the logic for accessing this information.
After a careful technical analysis of five alternative complete
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substrate kits, VisualWorks from ParcPlace Systems was cho-
sen as the development software for the PC, UNIX client,
and UNIX server, while HP’s Distributed Smalltalk (see ar-
ticle, page 85), which also works with VisualWorks, was the
tool of choice to build and manage the client/server interac-
tion. All system information (e.g., documentation) at this
time of writing (release 2.0) still resides with the products
and a central repository has not yet been chosen. Tools such
as Object Lens (working with VisualWorks) or HP Odapter
make relational databases look like object databases, so we
know that the selection of a repository can be made very
quickly when needed.

VisualWorks was the easy winner because it provides a com-
plete environment for the development of true graphic ap-
plications that run unchanged on UNIX-system-based, PC,
and Macintosh computers under their native windowing sys-
tems. Three of VisualWorks’ features made it especially appro-
priate for the Software Solution Broker:

VisualWorks is built on Smalltalk, a pure object-oriented

language designed for fast modular design.

* VisualWorks possesses a tested set of development tools,
including browsers for object classes, a thread-safe debug-
ger, and a change manager to track modifications to the
code, as well as an inspector for use in testing.
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Fig. 2. A window within the Software Solution Broker showing VisualWorks tools for prototyping a customer application.

VisualWorks has a large class library of more than 350 types
of portable objects. These include a rich user interface de-
velopment toolkit suitable for all major windowing systems.

HP Distributed Smalltalk extends VisualWorks’ capability for
developing standalone systems into an environment for
creating distributed object systems (see Fig. 5) by adding the
following:

A full implementation of the Object Management Group
(OMG) Common Object Request Broker Architecture
(CORBA) core services

Common Object Services for life cycle operations such as
creating objects and the relationships between them
Sample application objects, for example for the modular
partitioning of client/server functionality into semantic and
presentation objects.

These objects and services for building distributed applica-
tions are portable to all platforms supported by VisualWorks.
Furthermore, they are compatible with the OMG CORBA
standards. HP’s Distributed Smalltalk provides seamless sup-
port of client/server interactions between VisualWorks

* OSF DCE is the Open Software Foundation’s Distributed Computing Environment.
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images. CORBA compliance makes our Software Solution
Broker implementation open and capable of interoperability,
for instance with C++ CORBA-compliant applications, and as
soon as HP Distributed Smalltalk is OSF DCE-compliant,*
also with DCE remote procedure calls (RPCs). For the cur-
rent release, TCP/IP or HP Sockets are being used.

Product Encapsulation

Everybody who has worked with spreadsheets, word proces-
sors, or CAD systems knows that similar or identical func-
tionality does not mean that the user interfaces and more
generally the visual, iconic, and mental models are compara-
ble. For the Software Solution Broker, too, each product has
its own artifacts and idiosyncrasies, its own look and person-
ality by which we can identify it when we see it in use or on
the shelf of a vendor. This unavoidable fact poses challenges
for the “virtual shelf” of the Broker. Without wanting to blot
out the individuality of a vendor’s offering it was the objec-
tive of the development team to minimize the effort needed
for the user to get accustomed to this diversity. Generally
speaking, the variety has to be hidden behind a simple and
consistent, product independent mode of access with uni-
form and intuitive graphical symbolism. A particular example
is the double click used consistently to launch an applica-
tion.
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Fig. 3. Prototype display for a customer application constructed using the Software Solution Broker to select user interface and database
software.

Encapsulation, in the context of the Software Solution Bro- customer. This means the consultant can access editors, exe-
ker, describes a body of activities and software mechanisms cutable code, and documentation, but isn’t able to change the
that have two purposes: to integrate each product within the  internal product configuration, the way it is stored and ad-
overall product portfolio so that the consultant can use it in ministered in folders, or the source code. Because of the

its native mode, and to provide a uniform way to access the intrinsic symmetry between Software Solution Broker servers
products, their associated tools, and other artifacts. This ac- and clients (see Fig. 4) the encapsulation can be done
cessibility, it should be noted, is restricted to the features either on the server side or on the client side, provided the

and artifacts that are relevant to consulting work with the

Broker Server(s) Broker Clients

Network
—
—

Central
Repository VisualWorks VisualWorks
Object-Oriented (Server Side) (Client Side) Fig. 4. Software Solution Broker

Database software substrate, showing the
client/server architecture, the user

HP Distributed Smalltalk interface engine (VisualWorks),
and the client/server framework
. . HP Distri lltalk).
Object Request Broker TCP/IP or HP Sockets Object Request Broker (¢ istributed Smalltalk)
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classes FolderPlusPO and EncapsulationDialog are present in the
client. These two classes will be discussed below.

It is the already mentioned semantic/presentation split, to-
gether with object-oriented features such as inberitance and
polymorpbism that make the encapsulation effortless. The
semantic/presentation object distribution model is HP Dis-
tributed Smalltalk’s implementation of a distributed client/
server architecture. In this model, classes always appear in
logical pairs, one representing the server semantics, the
other their presentation in the client. Consequently, the class
instances or objects also come in pairs. Take for instance the
window object. Every window is composed of two logical
parts: its shared (semantic) properties such as its rectangular
shape, and its local and personal (presentation) attributes
such as color. In general, a semantic object often has (and
controls) many different presentation objects, which in the
case of the Software Solution Broker handle the remote user
interactions, thus reducing network traffic. For instance, one
semantic data display object creates and controls different
presentations of the data as a bar chart and a pie chart in a
decision support system. HP Distributed Smalltalk allows
various modes of collaboration between the semantic and
presentation objects, including messages that are handled by
the object request broker. (For a simple but complete exam-
ple see the HP Distributed Smalltalk User’s Guide, chapter
10.)

After this abstract introduction of HP Distributed Smalltalk’s
semantic/presentation split architecture we will describe in
more concrete terms how it works for the encapsulation
procedure. As stated above, encapsulation must achieve two
goals: it has to present a graphical representation of the arti-
fact (product, tools, demos, documentation) in its native
mode to the remote client, and it must allow the remote user
to launch the artifact at the server side through this represen-
tation. HP Distributed Smalltalk has a pair of classes, MediaSO
and MediaPO, that accomplish exactly this. (The suffixes SO
and PO imply that semantic and presentation objects, respec-
tively, are spawned by these classes). Tracing the interaction
diagram between two objects of these classes we found that
there exists a ready-made method called updatePresenter, vis-
ible in the MediaSO class, that creates the remote presentation
object of a product or other artifact in the server. To custom-
ize the generic MediaSO and MediaPO classes and the method
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development and run-time
environment for distributed com-
puting.

updatePresenter for the encapsulation of specific artifacts we
first created the narrower subclasses ArtifactSO and ArtifactPO.
Then we augmented ArtifactSO with the attributes of artifacts
such as vendor and product names. Finally, using overload-
ing, we extended the method updatePresenter to include,
among several other administrative tasks, the crucial behav-
ior required for launching the artifacts while exporting their
display to the client platform.

Concurrent with this architectural design of the classes and
methods that bring about encapsulation in the Software
Solution Broker, a few product dependent steps must also
be taken. This is done at the instance or object level of every
concrete artifact (such as a product) so that it will behave in
its expected, native mode. This is a simple matter of insert-
ing the right environment variables and parameters in an
encapsulation dialog window. The required information can
easily be gleaned from the installation manual of the particu-
lar product that is being encapsulated. Finally, products,
tools, and other components are put into folders and the
encapsulation is done.

Use of Object Technology

The design and building of the Software Solution Broker
were characterized by a short development time, a minimal
amount of new coding, and a high degree of reuse. The
major reason is the application of object-oriented technol-
ogy. The object-oriented use is pervasive throughout the
design, as indicated above, but it is helpful to point to spe-
cific examples. We'll give two examples for the object-ori-
ented features inheritance and polymorphism in the context
of encapsulation.

One of the examples has just been described: the subclass
ArtifactSO of the class MediaSO inherited the method update-
Presenter, which in turn, through the feature of polymorphism,
was overloaded (that is, extended to include additional
functional behavior).

The encapsulation dialog window provides another example.
As an administrative tool, it is not available to the user. It is
an object built from a subclass of the existing HP Distributed
Smalltalk class called SimpleDialog. From this class, the win-
dow inherits characteristics such as its property to pop up in
front of other windows (it’s not obscured), its basic layout
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HP-UX*
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© ODBMS Server

O API Libraries (C++)

Informix

O New Era

Neuron Data
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O Smart Elements (Openedit)

© Open Interface Elements (Open edit)
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© Open Client /C

O SQL Monitor Client

O SQR Workbench

O APT Execute
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O QDESIGN Application
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O XVT-Power++ Demo Guide
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HP-UX is based on and is compatible with Novell's UNIX"
operating system. It also complies with X/Open’s* XPG4,
POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface
specifications.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company
Limited.

X/Open is a trademark of X/Open Company Limited in the UK
and other countries.

MS Windows is a U.S. trademark of Microsoft Corporation.
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with a text box and O.K. and cancel buttons, and its link to
a value holder that holds the environmental variables,
names, and other information needed for the encapsulation.
The only method needed in addition to inherited ones is the
one requesting the encapsulation parameters mentioned
above.

The same procedure, that is, the use of predefined classes
and thus minimal coding, applies to HP Distributed Small-
talk’s folders containing the encapsulated product with its
tools and other artifacts. The HP Distributed Smalltalk class
FolderPO (PO indicates it is the folder class spawning presenta-
tion objects) has a method windowMenu, which creates a win-
dow with several pop-up menus that have labels such as
Action, Edit, and so on. For a subclass of FolderPO called Folder-
PlusPO, these properties of windowMenu are inherited, but win-
dowMenu is also changed (while keeping the same name), by
the addition of a method artifactCreate and its label in one of
the pop-up menus of windowMenu. The method artifactCreate is
responsible for the inner workings of the encapsulation dia-
log window mentioned above.

Development Methodology

Funding for the Software Solution Broker project was subject

to the condition that the development team find, justify, and
implement a design that brings the tools to the consultants in
the fastest possible way with the least amount of resources,

including development, maintenance, and support resources.

At the same time, every released version, even the very first
one, had to find immediate user acceptance. Based on these
stipulations the team chose a development method that is a

hybrid of iterative prototyping and the Fusion method.

Our reasons for favoring iterative prototyping over a classical
software design paradigm that starts with a complete specifi-
cation (such as the so-called waterfall model) were:

Time constraints. There are never enough engineer-months

to write a complete specification, implement and test it into

production strength.!

Constraints imposed by the intrinsic nature of the Software

Solution Broker tool we were building, that is:

O Client-side usability. The GUI that was eventually chosen
is the result of repeated testing by potential users to
achieve maximum ease of use and intuitiveness, and this
amount of trial-and-error cannot be specified in advance.

O Tool accessibility. The different products on the virtual
shelf have different behaviors and their own requirements
for resources and administration, and creating the encap-
sulation process again requires much experimentation and
gradual maturation based on experience that cannot be
specified a priori.

O Using the object paradigm. The software substrate chosen
(HP Distributed Smalltalk with VisualWorks) is well-suited
for the rapid development of GUI and client/server
applications.

Based on these considerations, our overall approach was
that of evolutionary prototyping, in which a fully functional
prototype is ushered through repeated refinement steps into
a production-strength end product. We realize that often a
prototype leads only to an executable specification or a vali-
dated model, not a high-quality, stable product. However, in
our case the sophisticated framework of HP Distributed
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Smalltalk with its semantics/presentation split and Visual-
Works with its Model View Controller ensured full function-
ality and high quality at each refinement step because we
reused the existing, high-quality code (including the library
of classes) and very sparingly added new, thoroughly tested
code, preferably as instances (objects) of the existing class
library.

Fusion Method

While iterative prototyping can be seen as a software devel-
opment philosophy that is primarily dictated by business
requirements such as time to market, break-even time, or
optimal return on investment, the Fusion method? was de-
veloped with the goal of creating a language independent,
comprehensive, software project management method.
Being a systematic object-oriented development method, it
blends well with our software substrate, which we chose
based on openness, compliance with industry standards,
ease of use, and the ability to separate the server (semantics)
from the remote clients (presentation). The Fusion method
emphasizes a modular design process in clearly demarcated
phases, so it synchronizes well with the iterative prototyping
approach, which requires the repetition and refinement of
certain development stages without impacting others. Fur-
thermore, the Fusion method insists that a software develop-
ment process of the complexity encountered today must
cover the entire software development life cycle. The Fusion
method’s phased development process served as the blue-
print for the Software Solution Broker. It can be summarized
as follows?2 (our italics):

Starting from a requirements document, the analysis phase
produces a set of models that provide a declarative descrip-
tion of the required system behavior. The analysis models
provide high-level constraints from which the design models
are developed. The design phase produces a set of models
that realize the system behavior as a collection of interacting
objects. The implementation phase shows how to map the
design models onto implementation-language constructs.

In our hybrid approach we take an early, loosely defined
functional prototype as our initial requirements definition
(an executable specification), to be modified and refined in
subsequent iterations through the three phases of analysis,
design, and implementation. After each of these phases a
review of the phase outputs is conducted by the develop-
ment team in conjunction with users. The results of this
audit are prioritized and, if deemed important, incorporated
into the prototype which, through several of such review
loops, evolves after a full cycle into the production product.
(For details about the outputs mentioned and the complete
Fusion process breakdown see reference 2, especially
Appendix A.)

In summary, the two complementary methods of iterative
prototyping and Fusion serve two main purposes. First, at
the end of each prototyping cycle a fully functional produc-
tion-strength product is released. Second, the three Fusion
phases—analysis, design, and implementation—of every
cycle are independent of the phases in another cycle. There-
fore, we are in effect working towards several releases at the
same time (see Fig. 6).
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Fig. 6. Software Solution Broker development used iterative proto-
typing and the Fusion method, resulting in parallel development
cycles.

Customizing the Software Solution Broker

In addition to being a productivity tool and a hub of product
expertise for HP’s technical consultants, the Broker can be
customized to meet the business needs of end customers as
well. To sketch how such a customization can be done using
the object-oriented framework of HP Distributed Smalltalk,
imagine a vendor of CAD (computer-aided design) software.
Rather than offering shrink-wrapped software packages on
the shelves of the store the retailer wants to offer customers
an environment where they can, by navigating through vir-
tual shelves, choose interesting products and “test drive”
them in the store before deciding what to buy.

For an end customer such as the CAD software vendor, the
Broker can be customized by mapping the particular cus-
tomer requirements into several levels of design complexity.
These levels describe in technical terms what level of inter-
vention into the framework of HP Distributed Smalltalk is
needed to alter and customize the existing classes and meth-
ods. On the lowest level, the requirements fit the HP Distrib-
uted Smalltalk framework exactly, and the system can be
built from existing classes without change. A higher level of
intervention would be needed to construct the Software
Solution Broker for the CAD software vendor. Slight modifi-
cations of core services (relating to containment and life
cycle semantics), in addition to class augmentation and over-
loading of methods, would be recommended. Working with
predefined, well-documented levels of intervention that are
necessary to meet a customer’s requirements has the advan-
tage of communicating to the customer in advance, during
the analysis and before system design begins, how much
reuse of the framework is possible, and how much non-
framework augmentation is necessary. Intervention levels are
thus not only technical assessments but also indicators of the
final costs for the system.
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Conclusion

The Software Solution Broker was not a typical client/server
application development project. We were not primarily con-
cerned about two-tier or three-tier architectures, about ob-
jects per se, about the one “right” programming language, or
about coding. In fact, we went the opposite route. Based on
the working requirements of HP’s technical consultants and
our own analysis of how consultants work with customers,
we resolved to translate these requirements into a system
built from distributed objects. The building, however, con-
sisted mainly in the skillful choice of existing classes and the
exploitation of HP Distributed Smalltalk’s framework. The
novelty in our approach lies not in the coding of new struc-
tures, but in the extensive application of reuse. In fact,
whenever new code seemed required, we took it as a warn-
ing that further analysis was needed to look for prefabricated
code within the framework of HP Distributed Smalltalk. This
simple principle, essential for a fast time to market, also
guaranteed a short turnaround time and high quality.

Through its first two releases, 1.0 and 2.0, the Software Solu-
tion Broker can be viewed as a distributed productivity tool
offering three overlapping types of services. These three
types can be described metaphorically as a virtual software
shop for the display of individual products, a consultative
workbench or simulated classroom for studying and experi-
menting with several collaborating products, and a virtual
demo center with remote satellite offices where the technical
consultants can build prototypes and create demos for a
customer. Looked at from a broader perspective, however,
the Software Solution Broker architecture and implementa-
tion are, with small customization, also ideal for other, re-
lated applications that require one (or a few) persistent cen-
ters and many locally distributed and individually presented
clients. One example is software distribution. Another is the
establishment of a worldwide software application develop-
ment lab where each satellite group can develop its own
part locally, check it in with a central repository where it is
available to the other satellites, and participate remotely in
the integration of the parts into a system. Furthermore, ob-
ject technology, with its concept of containers, makes avail-
able compound documents (text, picture, voice, video, etc.)
that can be employed also on the nontechnical side of busi-
ness as vehicles for elaborate project proposals and other
communication with business customers—for instance, to
propose a solution by showing a video of a prior, successful
installation (this would take the place of a paper document
of reference sites). In this role, the Software Solution Broker
can be a worldwide business solutions exhibit and a conve-
nient repository for a portfolio of repeatable solutions from
which the customer, advised by a consultant, can select
products the way we now choose from mail-order catalogs.
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Bugs in Black and White: Imaging IC
Logic Levels with Voltage Contrast

Voltage contrast imaging allows visual tracking of logical level problems to
their source on operating integrated circuits, using a scanning electron
microscope. This paper presents an overview of voltage contrast and the
methods developed to image the failure of dynamic circuits in the
floating-point coprocessor circuitry of the HP PA 7100LC processor chip.

by Jack D. Benzel

As pressure for higher performance and higher integration
drives integrated circuit design towards increasing complex-
ity, IC designers need an ever-broadening set of analysis and
debugging tools and methodologies for tracking down func-
tional bugs and electrical margin issues in their designs.

In developing the new HP PA 7100LC PA-RISC micropro-
cessor chip, the floating-point arithmetic logic unit (FPALU)
megacell used design techniques based on the PA 7100 de-
sign.! The FPALU design is implemented with mostly mouse-
trap-style dynamic logic? with significant use of single-ended
dynamic logic in the last pipeline stage.

Past experience in debugging electrical problems in mouse-
trap designs has shown these problems to be very difficult to
find.3 A failure mechanism that emerged in prototypes of
gate-biased PA 7100LC FPALUs proved highly challenging
and evasive and required a large engineering effort to get
from detection to the root cause identification. The voltage
contrast imaging methodology proved useful in analyzing
and later confirming the root cause of the failure mechanism.
Results from the analysis allowed us to correct the design
and verify its quality.

The Wall

The FPALU failure mechanism was named “the wall” because
of its appearance on a frequency-versus-voltage shmoo plot
depicting regions of passing and failing vectors (see Fig. 1).

Considerable engineering resources were applied toward
finding the root cause of the wall using many of the tech-
niques that had proved successful on previous design
projects, including but not limited to shmoo plots, failing
vector/opcode analysis, clock phase stretching, focused ion
beam (FIB) experiments, and simulations of probable circuit
failures.3 These techniques were not providing enough infor-
mation, and a new methodology was clearly needed.

Why Voltage Contrast?

Another HP design team had recently had success in using
an electron-beam prober? to track down the root cause of a
noise problem on the same CPU chip.

Previous experience with another project several years ago
provided insights into a methodology similar to electron-
beam probing called voltage contrast, using a scanning
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electron microscope (SEM). After considering the various
trade-offs it was decided to proceed with the voltage contrast
imaging while keeping open the option of going to electron-
beam probing if further analysis was required.

SEM Fundamentals

The SEM displays objects by sensing and imaging the release
of secondary electrons from the surface of a sample which is
held in a very high vacuum. A finely focused beam of elec-
trons accelerated from an electron gun with a thousand-volt
potential is swept over the surface of the sample in much
the same way that a television screen is scanned. As the
high-energy electrons in the beam strike the sample, several
valence electrons will be “knocked loose” from the sample
as the impinging electrons lose energy. These now-free elec-
trons, or secondary electrons, find their way to the surface of
the sample and are released from the surface. A highly
biased metal screen situated near the sample collects escap-
ing secondary electrons into a detector which generates a
signal proportional to the number of electrons collected. The
signal from the detector is amplified and displayed on a CRT
screen which is scanned in synchronization with the electron
beam sweeping the sample.
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Fig. 1. Shmoo plot of “the wall.”
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Fig. 2. (a) First pass “charge” of IC surface with secondary electrons.
(b) Second pass “read” of charged surface (bottom), resulting video
signal (middle), and 2D video image (top).

Voltage Contrast Imaging

Voltage contrast imaging uses the electrical nature of the
SEM to view voltage potentials on a sample changing with
time. Figs. 2a and 2b show a cross section of the top two
metal signal layers of an IC with the metal lines insulated by
an oxide.

The imaging is done in two stages: charging and reading.
Fig. 2a

shows the state of the IC at the end of the charging stage.
The positive potential of the buried metal lines attracts and
holds the generated secondary electrons on the surface of
the oxide above the metal lines. These charges will remain
on the surface for long periods of time, basically acting like
a capacitor.

Fig. 2b shows the state of the IC at the end of the read stage
with the voltage potentials of the metal lines now changed.
The resulting detector signal level and the CRT image gener-
ated from it are also shown above the cross section. As the
electron beam sweeps the surface of the sample, the elec-
trons that were once held by the positive charge of the up-
per-left and lower metal lines (Fig. 2a) are knocked off the
surface and are collected into the detector, generating a
bright signal on the CRT. On the other hand, the upper-right
metal line is now more positive, and the surface above it
will release fewer secondary electrons as the surface capaci-
tively charges, corresponding to a lower number of elec-
trons collected and thus a darker signal on the CRT.
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Fig. 3. Video image of DUT fixture for voltage contrast setup with
top shield removed.

DUT Preparation
Preparing the IC for the SEM environment required careful
attention to several details as follows:

* Clean Power Environment. Some previous experiments indi-
cated that the wall was somewhat remedied by a power
environment that restricted the Vpp current supply. There-
fore, careful attention was paid to provide adequate low-
inductance power feeds with adequate decoupling
capacitance.

e Simple Vector Stimulus. Restricted cabling into the SEM
chamber and easy portability between two different SEM
facilities required a simple method for executing a wall-
sensitive floating-point operation (FLOP). A successful
method was developed to launch and step through the
phases of a FLOP using the JTAGT-conforming serial test
port and a serial test board.

 Image Capture Synchronization. The capture and imaging
of events on the SEM system requires a synchronizing signal
generated by the device under test (DUT). Several small
surface mount ICs were mounted on the PA 7100LC package
to decode the clock signals and derive another synchroniz-
ing signal to provide the SEM with an accurate sync pulse
that identified the leading clock edge at the starting phase of
the failing FLOP.

* Minimize Outgassing. To achieve an adequate vacuum in
the SEM system, materials that had minimal outgassing were
required. This prevented the use of heatshrink tubing and
quick-cure epoxies and required careful cleaning of the DUT.

e Packaging. The packaging fixture containing the CPU (see
Fig. 3) met several requirements. The wall was a high-
temperature phenomenon and required heating the part
inside of the SEM with large resistors mounted inside the
fixture. The metal enclosure shielded all but the die surface
from the electron beam, since the beam will positively
charge plastics (wiring, capacitors). The shield also pre-
vented electrical signals in the DUT wiring from interfering
with the beam’s trajectory. The last requirement filled by the
fixturing was a compact size to fit inside the small SEM
chamber.

T JTAG is the Joint Test Action Group, which developed IEEE standard 1149.1, IEEE Test
Access Port and Boundary-Scan Architecture.
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Fig. 4. Beam blanking and synchronization signal generation.

Imaging Dynamic Signals

The electron beam scan is synchronized with the scan of the
video display tube and consequently has a slow refresh rate
of 1/60 second. This slow refresh rate works well for station-
ary objects and static electrical signals, but the signals of
interest involved in the wall failure are dynamic, typical of
mousetrap designs. The imaging of dynamic signals required
the development of a new process.

Synchronization and Beam Blanking

The slowest rate at which the DUT could be clocked with
reliable operation of the scan path driven through the JTAG
port was 2.5 MHz, giving a 200-ns phase or period during
which dynamic signals would be active. Connecting a pulse
generator to the DUT’s sync pulse allowed the generation of
a variable-width, variable-delay pulse (see Fig. 4) which was
used to blank the electron beam scanning the DUT. Using
this blanking signal, the SEM could be controlled to charge
or read the IC only during the time of interest when the
wall-related signals were active. A 100-ns sample window
was chosen for the blank signal, which was centered in the
clock phase to reduce possible overlap into adjoining
phases.

Once the beam was properly synchronized and blanked, the
apparent lack of information in the video image shown in
Fig. 5 gave a strong indication that more development was
needed.

Image Capture

The next problem to resolve was imaging the brief 100-ns
video information successfully. Several ideas were evaluated
and tried before an acceptable method was found:
Photograpbhic Film Integration. The SEM focuses the light
from a secondary CRT onto the film plane of a Polaroid
camera over a period of several minutes while exercising
the DUT. This method resulted in either completely black or
very indistinct images of the IC.

Two-Dimensional Scan. The SEM can operate with basically a
zero-frequency vertical scan rate. This provides an image of a
single horizontal slice of the IC surface while improving the
refresh rate. Changes in beam intensity were undiscernible
in this mode.

104 April 1995 Hewlett-Packard Journal

Two-Dimensional Scan in Oscilloscope Mode. Using the
same two-dimensional scan mode as above, the intensity
vector of the SEM’s display can be used to drive the vertical
component of the video signal. The resulting image is remi-
niscent of an oscilloscope display showing intensity on the y
axis. No discernible changes in intensity were visible in this
mode as well.

Two-Step Charge/Read. Instead of trying to charge and read
on each or every other FLOP, the process was broken into
two steps. The first step involved turning the beam on only
during the phase of interest while the part was executing
wall FLOPs over a period of three minutes. A long integra-
tion time was required because each time the beam turned
on it only charged a tiny area of the field of view. At the
end of the integration time, the beam was turned off, the IC
powered down, and the beam blank removed from the SEM.
The IC now had a surface charge that reflected the state of
the metal lines during the phase of interest. The second step
was to turn the beam on with no blanking to read the sur-
face charge in its first pass over the IC. The resulting video
image was clear but brief (one video frame). This process
produced an image in which metal lines with a positive volt-
age were white and metal lines at ground were black. An-
other small variation in this process was not to power down
the part before the read step. The resulting image took a
little more thought to interpret because only the metal lines
that changed state from the previous step were black or
white.

Two-Step Charge/Read with VCR Frame Capture. By adding
a VCR to the setup, the resulting video image fed to the CRT
could be captured on tape and then freeze-framed for view-
ing. The purchase of a VCR with a forward and reverse
single-frame jog shuttle control greatly aided in isolating the
image captured on a single frame. It was apparent from the
videotape that the majority of the IC’s surface charge was
removed in the first sweep of the beam across the die area.
This last methodology was used successfully for imaging the
dynamic signals in the FPALU.

Results

Once the methodology was established, over 120 images
were captured and catalogued on video tape over a four-
week period. Several days were spent at the outset trying to
understand why an active clock line in the imaged phase

Fig. 5. Video image of the first-pass imaging attempts.
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Fig. 6. Zero_topH mousetrap buffer.

was not showing activity, a key indicator that the proper
phase of the FLOP was being captured. This issue was never
satisfactorily resolved, yet phase-by-phase clock gating in the
FPALU ensured that the signals would only be active and
thus visible in the phase of interest.

Figs. 6, 7a, and 7b show the schematic, artwork, and voltage
contrast image of probably the clearest failure identified. The
circuit in Fig. 6 shows a mousetrap buffer whose storage
node, s1, was somehow being compromised, possibly
through a ground differential problem or a noise spike on
the input.

Fig. 7. (a) Metal 3 plot of Zero_topH buffer with failing input/output
pair A. (b) Voltage contrast image of victimized buffer with failing
input/output pair A.
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Circle A in Fig. 7a identifies the buffer’s input on the left and
the output on the right. The expected value of each metal 3
line is indicated above the lines (L=Low, H=High).

Fig. 7b shows a voltage contrast image captured from the
videotape showing the failure of the buffer. The image
clearly shows a low level on the input (black) and a high
level (white) on the output of the buffer in circle A. Note the
difference between circle A and circle B which identifies the
input and output of an identical buffer with no failures. It
became clear from this picture that the electrical event that
caused the buffer to output a high level was transitory in
nature and not a static event. The read step of the image
was taken with the IC powered down.

Metal 1 and even metal 2 lines can be difficult to image un-
less they are well-isolated from other metal structures. Fig.
8a shows the artwork and expected values where several
metal 1 lines were imaged. The vertical metal 1 route in
circle A should have a high or white level, and the route to
the right of it in circle B should have a low or black level.

Fig. 8b is the voltage contrast image showing the logical
misfiring (high/white) of the metal 1 route in circle B. This

N
N
R

s

(b)

Fig. 8. (a) FS[ABCD] bus artwork. (b) Voltage contrast image of FS[ABCD]
bus in metal 1 showing correct firing of the lines in circle A and the
incorrect firing of lines in circle B.
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Fig. 9. (a) Metal 3 structure(vertical routing) in passing state at nominal voltage. Horizontal routes are metal 2. (b) Metal 3 structure in

failing state at high voltage with wall failure.

failure was not seen until the root cause of the wall was
identified and the proper FLOP for arming the failure was
identified.

The logical states of individual lines of dense bus structures
in lower metal levels can be difficult to discern, yet differ-
ences between two states can often be readily identified.

Figs. 9a and 9b illustrate the differencing technique with an
example of a metal 3 structure in both a passing and failing
state (note the differences in the vertically routed lines in the
top-center of the figures). The bend or distortion in Fig. 9b is
the result of poor synchronization between the SEM and the
VCR that recorded the images. Note also the changes in the
horizontally routed metal 2 lines.

One technique that greatly aided the interpretation of the
captured images was to plot the artwork of the areas being
imaged and annotate the plots with the expected logical
levels as derived from a simulator.

Improvements and Future Use

It is difficult to determine if E-beam probing would have
provided quicker, more pertinent information than voltage
contrast. Each tool has its own benefits and drawbacks that
the IC designer must weigh in light of the problem to be
solved.

Additional IC physical structures and layouts could make
new designs more amenable to voltage contrast imaging as
well as E-beam probing and FIB experiments. These features
could provide regular, systematic, top-level-metal access to
control and data path signals throughout the design. Top-
level-metal access could be provided through directed routing
or through “via stacks” to top layers from lower-level metal
routes. The efficiency of such features in terms of improved
accessibility versus increased layout area is unknown.
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The image quality obtained from the SEM for voltage contrast
work could be improved by changing the electron gun fila-
ment from tungsten to a crystalline element. The crystalline
filament would increase the beam current and thus effec-
tively provide a brighter image without increasing the beam
energy which reduces resolution.

Conclusions

The use of voltage contrast imaging proved to be a useful
tool for analyzing and verifying the FPALU margin failure
known as the wall. Although the information gleaned from
the process did not lead directly to the discovery of the root
cause of the failure, the voltage contrast process functioned
well as a clue generator as suggested in reference 3 and
provided important confirmation of the root cause hypothe-
sis.
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Component and System Level Design-
for-Testability Features Implemented
in a Family of Workstation Products

Faced with testing over twenty new ASIC components going into four
different workstation and multiuser computer models, designers formed a
team that developed a common system-level design-for-testability (DFT)
architecture so that subsystem parts could be shared without affecting the

manufacturing test flow.

by Bulent I. Dervisoglu and Michael Ricchetti

Members of the latest-generation family of HP workstation
and multiuser computer products use the same system archi-
tecture and differ mostly in their I/O subsystem architecture
and configuration. From a system development point of view
an important characteristic of these products is their use of a
new high-speed system bus architecture and a large number
(over 20) of new ASIC components that were developed to
implement all of the various different configurations of the
product line. Furthermore, all components that interface with
each other via the system bus are required to operate with
the same high-frequency system clock.

A further difficulty was that four different models, ranging
from a single-user desktop workstation to a multiuser com-
puter, were being developed by different design teams that
were both organizationally and geographically separated
from each other. This made it necessary to develop a com-
mon system-level design-for-testability (DFT) architecture to
be used throughout the system and across the different com-
puter models so that subsystem parts could be shared
among the different computer models without affecting the
manufacturing test flow.

To address these difficulties a DFT core team was formed at
the very early stages of the project. Because of the large
number of different ASIC teams involved, it was decided that
all ASIC teams at the same site would be represented by a
single representative on the DFT core team. This team has
been instrumental in achieving goal congruence among the
different design teams and manufacturing organizations. Fur-
thermore, the presence of the DFT core team made it pos-
sible to develop and implement a DFT methodology that
was used by all of the ASIC teams, although the level of
adherence varied. The DFT core team also collected data
and performed DFT design reviews for some of the ASICs.

ASIC DFT Design Rules and Guidelines

One of the first activities of the DFT core team was to de-
velop a set of design rules and guidelines to be followed by
the ASIC design teams to ensure that DFT features would be
common among the various components. This made it pos-
sible to share efforts and results and to access the different
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DFT features in the ASICs during prototype system bring-up.
The following is a summary of these rules.!

1. All (functional) system clocks must be directly controllable
[from the chip pins and must not be used for any other func-
tion. All systems use a common ASIC component (the sys-
tem clock controller ASIC) to drive their clock terminals on
the system board. This ASIC has control pins through which
it can be programmed for different clock generation schemes
as well as for starting and halting the system clocks. Thus, not
only the individual ASICs but also the entire system board has
directly controllable clocks.

2. All scan and test clocks must be directly controllable from
the component pins, which must not be used for any other
purpose. On the system board all test clocks are tied together
and controlled from a single test point.

3. For each ASIC there is a specific reset state which is entered
when the component’s ARESET_L signal is asserted. On the
system board, the power-on condition is detected and is
used to reset the ASICs to a known starting state. Next, the
memory controller ASIC generates an SRESET_L signal to all
other components on the system bus. Additional reset sig-
nals are generated by other ASICs for use locally.

4. All ASICs must implement a dedicated boundary scan reg-
ister and its associated test access port (TAP) as specified in
IEEE 1149.1 Standard Test Access Port and Boundary-Scan
Architecture.? Serial scan-in and scan-out ports of all ASICs
in the system (including the PA 7200 processor, which is on
a separate module) are connected to form a single serial
scan chain.

5. Access to each ASIC’s on-chip test functions must be pro-
vided using the IEEE 1149.1 test access port (TAP) protocol.
The same TAP controller design3 is used or heavily lever-
aged in many ASICs. This way, test features implemented in
this controller as an extension to the IEEE 1149.1 standard
were easily leveraged across different ASICs. For example,
the DRIVE_INHIBIT/DRIVE_ENABLE instructions and the OUT_OFF
bit in the boundary scan register (see “TAP/SAP Controller,”
below) are duplicated in different ASICs in this way.
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6. All ASICs shall be designed to support Ippg testing, when-
ever this is not prevented by the technology used. In most
cases this requirement did not present any further design
constraints or changes. In a few cases, an internal Ippg
enable signal had to be used to disable active pull-up and
pull-down circuits. However, because of schedule and cost
considerations the PA 7200 processor chip does not support
IppQ testing.

7. All ASICs shall implement internal scan for testing. The
percentage of internal nodes that are scannable shall be kept
as high as possible without sacrificing major chip area or
otherwise affecting the design methodology. For most practi-
cal purposes all ASICs have implemented internal scan for
100% or nearly 100% of all internal flip-flops. However, be-
cause of design style and technology differences, some por-
tions of the PA 7200 processor chip are not scannable.

8. There shall be no asynchronous logic implemented in the
ASICs. Lack of asynchronous logic is an important require-
ment for many CAD tools for generating test vectors. Fur-
thermore, this rule is intended to prevent side effects caused
by changing the internal and external signals in arbitrary
sequence. The only exception to this rule is granted for the
reset signals, which are implemented to follow a carefully
planned system reset strategy.

The following sections describe some of the DFT features
that have been implemented in the ASICs. Not all features
are implemented in all ASICs. Among the various ASICs, the
memory controller stands out as the chip with the most
extensive DFT features.

TAP/SAP Controller

Access to all on-chip DFT features is implemented through a
test controller block called the test access port/scan access
port (TAP/SAP). The test controller implements all of the
required instructions for the IEEE 1149.1 TAP controller as
well as an extensive set of public and private instructions
which are targeted mostly for internal testing of the ASIC.
Table I lists all of the TAP instructions that are implemented.
Among the public instructions that have been implemented
are the DRIVE_INHIBIT and DRIVE_ENABLE instructions which
are used to set and clear a latch in the system logic domain
(not considered part of the test logic).

System logic for all ASICs has been designed such that for
normal system operation (i.e., when test logic is not con-
trolling the I/O pins) the ASIC can drive out only if the
DRIVE_INHIBIT latch is cleared. Each ASIC uses its ARESET_L
input to clear the DRIVE_INHIBIT latch during power-up.
Whereas ARESET_L controls the DRIVE_INHIBIT latch only if the
TAP is in a reset state, explicit TAP instructions can be used
at other times to set or clear this latch. This scheme allows
in-circuit ATE programs to set the DRIVE_INHIBIT latch before
they terminate and reset the TAP without creating possible
board-level bus contention before removing electric power
from the board. Whereas the DRIVE_INHIBIT latch is consid-
ered part of the on-chip system logic, it is implemented as
part of the TAP controller design so that ASIC designers im-
plementing normal system functions do not have to deal
with any of the issues surrounding the DRIVE_INHIBIT and
DRIVE_ENABLE operations.
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Table |
TAP Instructions

Instruction Drive I/O Pads Scan Register
EXTEST Boundary Register Boundary
BYPASS System Logic Bypass
SAMPLE/PRELOAD  System Logic Boundary
IDCODE System Logic ID Code
HI_Z High-Impedance Bypass
DRIVE_INHIBIT Boundary Register Bypass
DRIVE_ENABLE System Logic Bypass
SCAN_INTERNAL System Logic f(Mode)
CHIPTEST High-Impedance f(Mode)
INTEST Boundary Register Boundary
DR_SCAN System Logic f(Mode)
SELECT_MODE Boundary Register Mode
SET_MODE_BIT Boundary Register Mode
CLR_MODE_BIT Boundary Register Mode
ISAMPLE System Logic Bypass
ESAMPLE System Logic Bypass
DS_DRIVE Boundary Register Boundary
DS_RECEIVE System Logic Boundary

Other TAP instructions are used to set and clear bits of the
mode register to provide access to additional test features
such as Ippg testing, double-strobe, and so on. It is also
possible to speed up internal scan operations by switching on
the parallel scan bit in the mode register. This feature en-
ables multiplexing of the chip’s I/O pins to perform serial
scan-in and scan-out of the internal scan register by breaking
it into three independent sections which are scanned in parallel
together with the boundary register, which is always scanned
using the test data in and test data out pins of the TAP.

CHIPTEST Instruction
One of the major difficulties in implementing DFT in the
ASICs used for this project has resulted from a common le-
veraged I/0O pad design that contains nonscannable latches.
Furthermore, the bidirectional I/O cell implements an internal
bypass path to feed into the chip the same value that is being
driven onto the I/O pad by that chip. In effect, I/O pads
contain nonscannable pipeline stages that control both the
direction and the value of data on the I/O pad. Following a
recommendation from the DFT core team the basic I/O cell
design was modified to allow data values received by the
on-chip system logic to be set up using the dedicated
boundary scan register. In addition, system logic output val-
ues can be captured into the boundary scan register using the
system clock. These design changes were coupled with fea-
tures provided by the CHIPTEST instruction in the TAP con-
troller to streamline the internal testing of the ASICs. For
example, all internal logic of the memory subsystem ASICs

(memory controller, slave memory controller, and data multi-
plexer) is tested by the following sequence:

1. Load the CHIPTEST opcode into the ASIC.

2. Use test clocks to perform a parallel scan of the ASIC in-
ternal nodes and the boundary register. At the end of the
scan-in process the newly scanned-in values are automati-
cally moved from the boundary register to the nonscannable
latches in the I/O-cells.
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3. Apply a single system clock to capture test results in inter-
nal nodes and system logic output values in the boundary
register.

4. Repeat steps 2 and 3 for each new vector, overlapping the
scan-in and scan-out operations.

Since the CHIPTEST instruction drives the I/O pins to a high-
impedance state it is possible (indeed it is intended) to exe-
cute these tests on a populated system board without fear of
creating board-level bus clashes during such testing.

BIST Implementation

The memory controller ASIC incorporates several wide and
shallow register files that are used for queueing operations
within the data paths. The total number of storage elements
in the register files is quite large, so it was not practical to
make these storage elements scannable. Therefore, a built-in
storage test (BIST) approach was chosen to test the memory
controller data path register files.

The memory controller BIST implementation was developed
with the following objectives:

Provide high coverage and short test times.

Provide at-speed testing of the register file structures to
ensure that the memory controller ASIC works at the re-
quired system clock frequency.

Provide flexibility and programmability in the BIST logic to
allow alteration of the test sequence for debug and unfore-
seen failure modes. In particular, the system bring-up and
debug plans provide a means for system-level scan access to
the state within the ASICs. Providing these features allows
read/write access to the nonscannable queue states for
prototype system debug.

Provide for testability of the logic surrounding the register
files through added observation and control points at the
inputs and outputs of the register file blocks. This is intended
to support automatic test pattern generation (ATPG) tools
used to generate test vectors for the memory controller and
thus ensure high coverage of the standard cell control logic
for the queues.

The design of the BIST logic in the memory controller data
paths is based on previous work that was done for the PA
7100-based HP 9000 Model 710 workstation. For that product,
a structure independent RAM BIST architecture that uses a
pseudoexhaustive test algorithm and signature analysis was
developed and was implemented in the I/O controller ASIC.4
The structure independent, pseudoexhaustive test algorithm
provides 99.9% fault coverage of typical RAM faults and can
provide 80% to 99.9% coverage of neighborhood pattern-
sensitive faults. It also allows the test time (number of read/
write accesses per memory address) to be varied according
to the desired fault coverage. BIST architectures for both the
present memory controller ASIC and the previous I/O con-
troller ASIC use a test algorithm similar to that described by
Ritter and Schwair.> Using the system clock for BIST execu-
tion, the RAM structure can be tested at the normal system
clock rate, thus providing at-speed testing of the RAM.

A dual-port write/single-port read register file from the pres-
ent memory controller data path, with test structures that
provide both BIST and ATPG support similar to the previous
I/O controller BIST architecture, is shown in Fig. 1. The two
write ports, A and B, can both be addressed and written
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independently. The single read port can also be addressed
and read independently of the A and B write ports. Thus,
two write operations and one read operation can all occur
simultaneously for one to three register locations, depending
on the A, B, and read port addresses.

Given the dual-ported design of the memory controller
register files, it was necessary to extend the previous I/O
controller BIST architecture to test a dual-ported RAM. This
meant that the memory controller BIST implementation
should be able to test not only the simultaneous dual-write
operations but also the various combinations of A/B write
and read operations to verify that the port interactions are
working correctly. For the dual-port register files in the
memory controller such interactions include an internal by-
pass when the read address is the same as either of the A or
B write addresses and a B-port dominant write when the A
and B write addresses are equal. This dual-write BIST algo-
rithm is described in reference 6.

For the register file shown in Fig. 1 each of the BIST struc-
tures—LFSR (linear feedback shift register), SHIFT, COUNT,
and MISR (multi-input signature register)—is dedicated to
BIST. Each register file also has its own dedicated program-
mable BIST control queue for sequencing the BIST algorithm.
The BIST_MODE signal enables the BIST functions and can be

From From
System  System
Logic Logic

BIST_MODE -

SYSCLK ——he Register

File

g_A_addr

From
System Logic ~

—

From
System Logic ~

P q_read_addr
From
Test Logic

From
System
Logic

q_B_addr

’

q_read_port
* = Multiplexer

Fig. 1. Dual-port register file with built-in storage test (BIST) and
automatic test pattern generation (ATPG) features. The inputs to the
central, embedded RAM structure are provided by multiplexing
between the normal system value and a BIST register, which is im-
plemented as a linear feedback shift register (LESR). The output
multiplexer makes it possible to capture the outputs into a multi-
input signature register (MISR) and to send either the RAM outputs
or the MISR contents to the rest of the system.
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controlled either by a pin on the chip or through other test
access logic such as an IEEE 1149.1 TAP controller or
P1149.2 SAP controller.27 All of the BIST registers are imple-
mented in standard cell blocks separate from the data path
register files. A detailed description of the memory controller
BIST implementation and operation, along with hardware
overhead and test coverage, can be found in reference 6.

Test Tools

The following sections describe the tools and tests that were
used and developed to test the three memory subsystem
ASICs: the memory controller, the slave memory controller,
and the data multiplexer.

Addscan. Fig. 2 shows the flow for scan synthesis. All three
memory subsystem ASICs were designed using a structured-
custom design method.8 Each standard cell block used the
in-house Addscan tool? for scan insertion and the scan links
between blocks were connected by hand in the top-level
netlist of the chip. The internal scan order of each block is
based on post place and route information.

Test Vector Generation. The test vector generation flow is
shown in Fig. 3. The ATPG tools from Crosscheck, Inc. were
used to generate most scan-based vectors. Some vectors
were hand-generated. A gate-level netlist of the chip, prior
to Addscan scan insertion, is used to create an ATPG data-
base for vector generation. A similar data base is used by
designers to do Timver static timing analysis. Timver, a timing
analysis tool from Aida, Inc., is used as a part of the test
methodology for two purposes. First, it allows the design to
be checked for hold violations on all paths to guarantee that
there will be no timing violations even if ATPG vectors exer-
cise nonfunctional paths in the design. Secondly, Timver
critical paths can be fed back into ATPG in the form of a
vector.tcp file to generate double-strobe path delay vectors.

block.scan.v

Fig. 2. Addscan tool flow. Add-
scan is an in-house software tool
for scan insertion. Synopsys is an
automatic design synthesis tool
from Synopsys, Inc.

chip.scan.v

The following test vector sets were created for each of the
memory subsystem ASICs:

Continuity. Checks for opens and shorts among the ESD
protection diodes. Prepared manually.

Ringtest. Uses serial “flush” speed (total scan path delay)
through the boundary scan register as a measure of the IC
process and verifies that the part is within the six-sigma
range. Generated manually in the form of a Cadence Verilog
body file.

Dc. These tests use the boundary scan ring to drive out all
ones or zeros for dc parametric testing. Generated manually
in the form of a Verilog body file.

Leakage and tristate testing. Places the ASIC into a high-im-
pedance state to allow testing the I/O pads for leakage.
Generated manually in the form of a Verilog body file.
Ippg. These vectors are generated by ATPG and are used to
perform static Ippg test and measurement.

TAP Tests. These are tests targeted at functional testing of
the TAP controller. Generated manually in the form of a
Verilog body file.

Chiptest. These vectors are generated by ATPG to test the
core chip logic in from and out to the boundary scan ring
using the TAP CHIPTEST instruction. I/O pad logic is not fully
tested by chiptest vectors.

Pintest: These vectors are generated by ATPG and will test
the remaining faults (primarily in the I/O pad logic) that are
not covered by the chiptest.

Bus Holder. Further testing of the electrical characteristics of
the bidirectional I/O cells. Generated manually in the form
of a Verilog body file.

BIST. BIST vectors are only generated on the memory con-
troller. These tests require only two scan vectors, one each
to set up the initialization and test passes for BIST. After
that, a burst of system clocks is applied to test the target

.-

chip.gates.v

Crosscheck
ATPG Tools:
nxpand
vcomp
fltgen

ATPG
FLTSIM
Timver

Ibpg

ATPG
Database

Timver
Database

vector.tiw
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vector.tcp

-

Fig. 3. ATPG (automatic test pat-
tern generation) and timing tools
flow. Timver is a timing analysis
tool from Aida, Inc. FLTSIM is an
in-house fault simulator for test
verification. The Ippg vectors are
generated by ATPG from Cross-
check Corp.

vector.tst
vector.fdx
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blocks at speed. These vectors are generated using a Perl
script to produce a .tst vector file.

Double-Strobe. These vectors are generated by ATPG based
on Timver critical paths and are used to provide at-speed
testing of the ASIC.10,11

Ac testing of I/O Paths. These are functional tests that test
the speed characteristics of critical I/O paths. Generated
manually only if testing, design review, and chip character-
ization results indicate a concern.

Process, Voltage, and Temperature (PVT) Block Test. Gener-
ated manually, this group of tests applies only to the slave
memory controller chip which uses a unique PVT block to
compensate for process, voltage, and temperature variations
in a particular I/O cell.

Vector and Test Logic Verification. Fig. 4 shows the flow for test
vector verification using Verilog or LSIM (a special FET-level
simulator). Test vectors from ATPG can be directly converted
using TSSI (a tool for test program generation from TSSI,
Inc.) into a command file format and verified against a gate-
level netlist in Verilog or a FET-level netlist using LSIM. Alter-
natively, test vectors can be simulated using a Verilog body
file. A body file is a wrapper or test jig that can either be a
test vector set itself (hand-generated functional tests) or can
run scan-based ATPG vectors using a scan and clock se-
quence.

The AT&T Tapdance tool was used for further verification
of the TAP logic before tape release of the ASICs. Tapdance
generates a set of IEEE 1149.1 compliance tests to verify
standard TAP functionality. The Tapdance vectors were
converted using Perl scriptst into a Verilog force file and
simulated on a gate-level netlist.

Tester Format Translation. Fig. 4 also shows the flow for trans-
lation of vectors into a tester format. Using TSSI, vectors
were formatted directly to HP 82000 tester format. To get to
the Schlumberger S9000 tester, vectors were first formatted

t Perlis a high-level programming language.

[J Hewlett-Packard Company 1995

vector.cmd
-

Fail

Verilog
Verify

body_file.sef

HP 82000
Test Vectors
-
' Fig. 4. Vector verification and tes-
59000 ter translation tools flow. TSSI is
Test Vectors a test program generation tool

from TSSI, Inc. Aida represents a
suite of test tools from Aida, Inc.
LSIM is a special FET-level simu-
lator. SIMITS is a format conver-
sion tool from Schlumberger.

> Pass

Fail

to LSIM and then passed through SIMITS, a format converter
from Schlumberger.

Using a Verilog programming language interface that outputs
a TSSI simulation event format file dump, vectors can also be
translated from body files to one of the testers.

System DFT Features

The new systems have been designed to provide a method
to access ASIC scan paths, both boundary and internal, at
the system level. This has two major purposes. First, it pro-
vides a means of accessing the internal state of complex
VLSI components. This provides additional hardware state
information to designers that would typically be inaccessible
and can aid traditional prototype bring-up and debug meth-
ods. Second, it provides the ability to do scan-based testing
of board and system interconnect and internal scan testing of
ASICs.

The following test and debug features are provided by system
scan access:

* Ability to halt the system clocks and interrogate the internal

scan state of the ASICs.

¢ Single-cycle debug of the system core by halting the system

clocks, interactive scanning of the internal state, and then
starting or cycling the system clocks.

Board-level and system-level interconnect testing and inter-
active debug using boundary scan. This includes testing
connectors between two boards where boundary scannable
buses cross the connector.

Ability to test an ASIC while it is on the board using bound-
ary and internal scan. This may include double-strobe tests
and running on-chip BIST, if supported by the ASIC under
test.

As part of the overall DFT requirements, all ASICs implement
the IEEE 1149.1 Standard Test Access Port and Boundary-
Scan Architecture. This provides support for system-level
scan access. In addition, key debug support features are
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incorporated into the system clock controller chip to allow
for halting and controlling the system clocks. Further infor-
mation on system clock controller features can be found in
reference 12.

Fig. 5 shows a diagram of the system-level scan access hard-
ware. The Texas Instruments PC-based Asset toolset is used
as the interface to system scan. The Asset PC is connected to
a scan adapter board via the Asset interface pod. The scan
adapter board then plugs onto the system board and pro-
vides control of the system clock controller features, the TAP
controller and system logic reset, the clock halt triggers, and
the I/O device clock halt from the Asset software. The scan
paths in the system are configured as a single serial scan
chain with optional system boards implemented as dynamic
scan paths that can be configured in Asset.

The Asset scan tools provide the following capabilities for
system scan access:

Interactive control of scan path data and TAP controller in-
structions with scan-bit name mapping and packing and
unpacking of scan data.

Macro scripting capabilities for combining several interactive
operations into a single macro command. Asset also accepts
serial vector format scan vectors for user-developed tests.
Specification of system scan path configuration for dynamic
scan paths and optional boards, such as CPUs, memory
extender boards, and I/O.

Scan path integrity testing and boundary scan interconnect
testing of intraboard and interboard nets.

Control of system clock halt, single-cycle stepping, and
system and TAP reset.
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Fig. 5. System-level scan access.
Asset is a set of scan tools from
Texas Instruments, Inc.

Results and Conclusions

The DFT techniques described above, which were cham-
pioned by the DFT core team, were implemented in several
different ASICs with varying degrees of adherence to the
DFT rules and methodology. In general, results obtained
during prototype chip debug have shown a direct correlation
between the level of DFT implementation and the rapidity of
test development, chip characterization, and root-cause anal-
ysis. For example, while the three memory subsystem ASICs
were the last to reach tape release, these chips were the first
to reach the operational test release (OTR) and release to
manufacturing test (RTPT) checkpoints. The availability of
high-quality and comprehensive test sets for these chips en-
abled chip characterization efforts to be started right away.
Furthermore, success in reaching the OTR checkpoint made
it possible to transfer the task of testing prototype chips
(which are used in the prototype systems) to the manufac-
turing engineers. This had a very positive effect on resources
available to perform chip characterization. In turn, successful
completion of this step coupled with efforts of the R&D en-
gineers to improve test coverage enabled the team to reach
the RTPT milestone well before any of the other ASICs had
reached their OTR checkpoints.

The Asset tool and its customized extensions provided a low-
cost system scan access solution with flexible functionality
and ease of use. As a commercial tool solution it cut down on
development and maintenance costs compared to developing
a proprietary toolset and can be reused for future projects.
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